
Kelly Shortridge @swagitda_ | @shortridge Black Hat USA 2023

FAST, EVER-EVOLVING
DEFENDERS:

THE RESILIENCE REVOLUTION

shortridge@hachyderm.io | @swagitda_

There’s a pervasive sense that attackers
continually outmaneuver us as defenders.

2

shortridge@hachyderm.io | @swagitda_

Attackers are fast. They are ever-evolving.
How could we possibly outmaneuver them?

3

shortridge@hachyderm.io | @swagitda_

The answer is we become more like attackers:
nimble, empirical, and curious.

4

shortridge@hachyderm.io | @swagitda_

This talk is about revolution – a new paradigm
for systems defense, grounded in resilience.

5

Attacker
Asymmetries

shortridge@hachyderm.io | @swagitda_

How many of you have heard attackers only
need to get right once and then they win?

7

shortridge@hachyderm.io | @swagitda_

That’s a myth. They need to get right once for
initial access then get it right every time after.

8

shortridge@hachyderm.io | @swagitda_

So, what are attackers’ real advantages?

9

shortridge@hachyderm.io | @swagitda_

1) Attackers have a faster operational tempo

10

shortridge@hachyderm.io | @swagitda_

2) Attackers design, develop, and operate
mechanisms to outmaneuver us

11

shortridge@hachyderm.io | @swagitda_

3) Attackers research interconnections and
interactions in systems

12

shortridge@hachyderm.io | @swagitda_

4) Attackers have more tangible and actionable
success metrics

13

shortridge@hachyderm.io | @swagitda_

There is no reason why we can’t steal these
advantages for ourselves as defenders.

14

shortridge@hachyderm.io | @swagitda_

All of these reflect a foundation of resilience:
the ability to prepare for, recover from, and
adapt to adverse events.

15

shortridge@hachyderm.io | @swagitda_

We can seize opportunities that grant us these
same advantages via the resilience revolution.

16

I. Faster Tempo

shortridge@hachyderm.io | @swagitda_

Attackers pivot quickly in the face of adversity.

18

shortridge@hachyderm.io | @swagitda_

Attackers also rapidly evolve their methods.

19

shortridge@hachyderm.io | @swagitda_

We can achieve a faster tempo by adopting
approaches from modern software engineering.

20

Configuration as Code

shortridge@hachyderm.io | @swagitda_

CaC: the practice of declaring configurations
through markup rather than manual processes

22

shortridge@hachyderm.io | @swagitda_

Infrastructure-as-Code (IaC): the ability to create
and manage infra via declarative specifications

23

shortridge@hachyderm.io | @swagitda_

We generate the same environment every time,
creating more reliable and predictable services.

24

shortridge@hachyderm.io | @swagitda_

Organizations already use IaC for the audit trail
it generates and making practices repeatable.

25

shortridge@hachyderm.io | @swagitda_

Let’s take a whirlwind tour of IaC’s bountiful
benefits for security programs:

26

shortridge@hachyderm.io | @swagitda_

Faster Incident Response

27

shortridge@hachyderm.io | @swagitda_

Automatically redeploy infrastructure when
incidents happen… or even leading indicators

28

shortridge@hachyderm.io | @swagitda_

Compromised workloads can be killed and
redeployed as soon as an attack is detected

29

shortridge@hachyderm.io | @swagitda_

Minimized misconfigurations

30

shortridge@hachyderm.io | @swagitda_

NSA: misconfigurations are the most common
cloud vuln; easy to exploit + highly prevalent

31

shortridge@hachyderm.io | @swagitda_

IaC helps correct misconfigurations by users
and automated systems (machines) alike

32

shortridge@hachyderm.io | @swagitda_

Faster patching and
security changes

33

shortridge@hachyderm.io | @swagitda_

The real lesson of Equifax: patching processes
must be usable, else procrastination is rational

34

shortridge@hachyderm.io | @swagitda_

IaC reduces friction for releasing patches,
updates, or fixes & decentralizes the process

35

shortridge@hachyderm.io | @swagitda_

Protip: if an organizational process is unusable
or cumbersome, it will be circumvented.

36

shortridge@hachyderm.io | @swagitda_

Minimized

 Environmental

 Drift

37

shortridge@hachyderm.io | @swagitda_

Environmental drift: configs or other attributes
“drifting” into an inconsistent state

38

shortridge@hachyderm.io | @swagitda_

Automatic infra versioning minimizes this drift;
reversion and repeatability becomes easier

39

shortridge@hachyderm.io | @swagitda_

Catching vulnerable
configurations

40

shortridge@hachyderm.io | @swagitda_

Status quo is authenticated scanning in
production, which introduces new attack paths

41

shortridge@hachyderm.io | @swagitda_

IaC removes that hazard, instead scanning the
code files to find vulnerable assets or configs

42

shortridge@hachyderm.io | @swagitda_

Stronger change
control

43

shortridge@hachyderm.io | @swagitda_

IaC introduces change control via SCM,
enabling peer reviews on configs + changelog

44

shortridge@hachyderm.io | @swagitda_

tl;dr IaC grants us a faster operational tempo in
a variety of dimensions

45

Automating Security
Checks

shortridge@hachyderm.io | @swagitda_

CI/CD accelerates dev and delivery of software
features without hurting reliability or quality

47

shortridge@hachyderm.io | @swagitda_

CI/CD pipeline: sets of (ideally automated)
tasks that deliver a new software release

48

shortridge@hachyderm.io | @swagitda_

Compiling the app (building) + testing code +
deploying to test/staging + delivering to prod

49

shortridge@hachyderm.io | @swagitda_

CI/CD is a tool to make software delivery more
repeatable, predictable, and consistent.

50

shortridge@hachyderm.io | @swagitda_

We can enforce invariants: achieve properties
we want every time we build + deploy + deliver

51

shortridge@hachyderm.io | @swagitda_

“Database servers should only make outgoing
network connections to their replication peers
and a short list of core services.”

52

shortridge@hachyderm.io | @swagitda_

“Services must communicate over TLS and
validate remote certificates.”

53

shortridge@hachyderm.io | @swagitda_

“Only images built by our CI/CD system may
run on the production Kubernetes cluster.”

54

shortridge@hachyderm.io | @swagitda_

“Secrets should be retrieved on demand from
our secrets store instead of being baked into
source code or deployment images.”

55

shortridge@hachyderm.io | @swagitda_

If you can ship software when you want, you
can ship security fixes whenever you need to.

56

shortridge@hachyderm.io | @swagitda_

Everything is recorded; you can set granular
policy on who can deploy where and for what

57

shortridge@hachyderm.io | @swagitda_58

shortridge@hachyderm.io | @swagitda_

CI/CD can help us with patching and keeping
dependencies up to date

59

shortridge@hachyderm.io | @swagitda_60

shortridge@hachyderm.io | @swagitda_

Automated CI/CD pipelines means patches can
be tested and pushed to prod in hours vs. days

61

shortridge@hachyderm.io | @swagitda_

Update-and-patch cycles become an automatic,
daily affair, freeing time for other priorities

62

shortridge@hachyderm.io | @swagitda_

tl;dr CI/CD lets us move faster and track the
things we do – or revert (attackers can’t do so)

63

II. Design-based
defense

shortridge@hachyderm.io | @swagitda_

How should we prioritize the types of solutions
we design? Are some better than others?

65

shortridge@hachyderm.io | @swagitda_

We want to design solutions that encourage the
nimbleness that we envy in attackers.

66

shortridge@hachyderm.io | @swagitda_67

shortridge@hachyderm.io | @swagitda_

“Human fallibility is like gravity, weather, and
terrain, just another foreseeable hazard.”

68

shortridge@hachyderm.io | @swagitda_

Finite cognitive resources; competing
pressures; exhaustion, stress, distraction…

69

shortridge@hachyderm.io | @swagitda_

Kelly Lum pushed for HTTPS as the default for
Tumblr blogs in 2016 (a design-based solution)

70

shortridge@hachyderm.io | @swagitda_

Isolation, standardization, message buses,
declarative dependencies, queues, failover…

71

Modularity

shortridge@hachyderm.io | @swagitda_

Modularity: allows structurally or functionally
distinct parts to retain autonomy during periods
of stress & allows for easier recovery from loss

73

shortridge@hachyderm.io | @swagitda_

Unless components can fail independently, you
don’t have modularity in the resilience sense.

74

shortridge@hachyderm.io | @swagitda_

Queues and message brokers support
modularity, each in different ways…

75

shortridge@hachyderm.io | @swagitda_

A queue adds a buffer; a message broker can
replay and make return code non-blocking.

76

shortridge@hachyderm.io | @swagitda_

Both tools standardize how services pass data
around and provide a centralized view.

77

shortridge@hachyderm.io | @swagitda_

If your systems are modular, you can create
temporary “airgaps” (the “airlock approach”)

78

shortridge@hachyderm.io | @swagitda_79

Service A Processing service
(vulnerable)

Queue

shortridge@hachyderm.io | @swagitda_80

Service A Processing service
(vulnerable)

Processing service thrown
“out the airlock”

Queue
(growing)

shortridge@hachyderm.io | @swagitda_81

Service A
Processing service

(healed +
redeployed)

Queue
(draining)

shortridge@hachyderm.io | @swagitda_

Modularity minimizes incident impact – think
ransomware in serverless (it doesn’t happen)

82

shortridge@hachyderm.io | @swagitda_

Modularity allows for basic encapsulation and
separation of concerns… and supports isolation

83

shortridge@hachyderm.io | @swagitda_

Here’s what it’s like to live in 2023 with a
strong engineering culture:

84

shortridge@hachyderm.io | @swagitda_

RLBox: trap C code in a WebAssembly (Wasm)
sandbox to isolate hazardous subcomponents

85

shortridge@hachyderm.io | @swagitda_86

shortridge@hachyderm.io | @swagitda_

Imagine not worrying about 0day anymore*.

87

shortridge@hachyderm.io | @swagitda_

You’ve been so focused on AI you’ve missed
groundbreaking things like this. It’s sad. :(

88

shortridge@hachyderm.io | @swagitda_

In software, we’re lucky that we can isolate
failure to handle unexpected interactions

89

shortridge@hachyderm.io | @swagitda_

Start “boring”: set AWS security groups – or
use serverless functions, containers, or VMs

90

shortridge@hachyderm.io | @swagitda_

If a vulnerable component is in a sandbox, the
attacker faces a challenge to reach their goal

91

Paved Roads

shortridge@hachyderm.io | @swagitda_

Paved roads: well-integrated, supported
solutions to common problems that allow
humans to focus on their unique value creation

93

shortridge@hachyderm.io | @swagitda_

Attackers have paved roads, like Cobalt Strike
– it makes the easy way the pwnful way.

94

shortridge@hachyderm.io | @swagitda_

Hyperscale nation states love building platforms
and toolchains for their attack ops, too

95

shortridge@hachyderm.io | @swagitda_

We can adopt a similar approach for protecting
our software and systems from attack.

96

shortridge@hachyderm.io | @swagitda_

Netflix: Wall-E framework turns security
requirements into filters to replace checklists

97

shortridge@hachyderm.io | @swagitda_

Question for when you return to work: What toil
are you currently offloading onto your peers?

98

shortridge@hachyderm.io | @swagitda_

“The bulk of the ‘going internet-facing’ checklist
boiled down to one item: Will you use Wall-E?”

99

shortridge@hachyderm.io | @swagitda_

Block: enabling backend services to securely
connect across business unit boundaries

100

III. Systems Thinking

shortridge@hachyderm.io | @swagitda_

Attackers think in systems while defenders think
in components. It doesn’t have to be this way.

102

shortridge@hachyderm.io | @swagitda_

Attackers search for your hidden “this will
always be true” assumptions…

103

shortridge@hachyderm.io | @swagitda_

Then they ask, “you say this will always be true;
is that the case?” to break those assumptions

104

shortridge@hachyderm.io | @swagitda_

Attackers target our “this will always be true”
assumptions that exist all over our stack.

105

shortridge@hachyderm.io | @swagitda_

Parsing this string
will always be fast

106

shortridge@hachyderm.io | @swagitda_

Messages on this
port will always

be post-auth

107

shortridge@hachyderm.io | @swagitda_

An alert will always
fire if a malicious

executable appears

108

shortridge@hachyderm.io | @swagitda_

The attacker thinks, “They say X here, but I can
show that it isn’t quite true… interesting. Let’s
keep looking to see if they’re just a little wrong
or really wrong.”

109

shortridge@hachyderm.io | @swagitda_

We can adopt a similar process through
decision trees and resilience stress testing

110

shortridge@hachyderm.io | @swagitda_111

shortridge@hachyderm.io | @swagitda_

We can refine our mental models continuously
rather than waiting for attackers to exploit them

112

shortridge@hachyderm.io | @swagitda_113

shortridge@hachyderm.io | @swagitda_

Resilience stress tests help us identify the
confluence of conditions where failure happens

114

shortridge@hachyderm.io | @swagitda_

How do disruptions impact the entire system’s
ability to recover and adapt?

115

shortridge@hachyderm.io | @swagitda_

We can move fast and observe how failure
unfolds in our systems through experiments

116

shortridge@hachyderm.io | @swagitda_117

shortridge@hachyderm.io | @swagitda_118

shortridge@hachyderm.io | @swagitda_

Verizon: deploy a pod containing known vulns
on a target cluster to test security controls

119

shortridge@hachyderm.io | @swagitda_

If we adopt this across the industry, vendors
now must prove their products work… >:)

120

IV. Tangible Success

shortridge@hachyderm.io | @swagitda_

Attackers can measure tangible success and
receive immediate feedback on their metrics

122

shortridge@hachyderm.io | @swagitda_

Do they have access, how much access do they
have, and have they accomplished their goals?

123

shortridge@hachyderm.io | @swagitda_

Defenders struggle to create lucid, actionable
metrics that offer immediate feedback

124

shortridge@hachyderm.io | @swagitda_

CISOs, your “risk coverage” and “time to
detect” mean nothing, it’s embarrassing

125

System signals

shortridge@hachyderm.io | @swagitda_

Reliability signals also benefit systems security

127

shortridge@hachyderm.io | @swagitda_

Who deployed what and when?
(like orchestrator and deployment logs)

128

shortridge@hachyderm.io | @swagitda_

Who accessed what and when?
(like cloud audit data)

129

shortridge@hachyderm.io | @swagitda_

Database logs, billing records, netflow,
production crash dumps, error messages…

130

shortridge@hachyderm.io | @swagitda_

Traditional infosec doesn’t measure load,
latency, performance, or throughput (a mistake)

131

shortridge@hachyderm.io | @swagitda_

e.g. high CPU usage and memory shortages
are signals about systems security

132

shortridge@hachyderm.io | @swagitda_

Well-resourced attackers will monitor the system
they’re attacking to avoid hitting limits or alarms

133

shortridge@hachyderm.io | @swagitda_

Experiments can reveal what signals you should
be collecting – don’t take visibility for granted

134

shortridge@hachyderm.io | @swagitda_

So, what system signals can indicate attacks?
Turns out SREs and DevOps are our bffs…

135

shortridge@hachyderm.io | @swagitda_

Accept queue depth: attacker hijacking system
execution (T1574) or process hollowing (T1055)

136

shortridge@hachyderm.io | @swagitda_

Autoscale replica count: lateral movement
(T1072); cryptomining; brute forcing (T1110)

137

shortridge@hachyderm.io | @swagitda_

Billing alerts: cloud priv escalation (T1078);
crypto-mining (T610); querying data for recon

138

shortridge@hachyderm.io | @swagitda_

Cache hit rate (CHR): DoS; data exfiltration
(T1567); brute forcing

139

shortridge@hachyderm.io | @swagitda_

Disk usage, throughput, & IOPS: ransomware
(T1486); staging data for exfiltration (T1074)

140

shortridge@hachyderm.io | @swagitda_

DNS lookup errors: lateral movement, C&C,
data exfil (T1071.004); DoS for ransom (T1498)

141

shortridge@hachyderm.io | @swagitda_

Error rate: credential stuffing (T1110) or DoS

142

shortridge@hachyderm.io | @swagitda_

Heartbeat response: endpoint DoS (T1499);
restricting connections for evasion (T1562)

143

shortridge@hachyderm.io | @swagitda_

Rate limit availability: SSRF (T1190); brute force
logins (T1110)

144

shortridge@hachyderm.io | @swagitda_

Replication lag: unauthorized access or
modification (T1565); exploiting inconsistencies

145

shortridge@hachyderm.io | @swagitda_

Resource consumption creeping towards max
levels (CPU, memory): cryptominers; hijacking
resources (T1496); in-memory attacks (T1055)

146

shortridge@hachyderm.io | @swagitda_

Response time: DoS; unreliable exploit (T1190)

147

shortridge@hachyderm.io | @swagitda_

Swap usage: data exfiltration (T1074.001)

148

shortridge@hachyderm.io | @swagitda_

System log lag: stopping or deleting logs to
conceal attack operations (T1070)

149

shortridge@hachyderm.io | @swagitda_

We need our feedback loops to give us
immediate sensory input like attackers get

150

Viva Las Vegas
la Révolution

shortridge@hachyderm.io | @swagitda_

We can outmaneuver attackers by becoming
nimble, curious, and empirical as well

152

shortridge@hachyderm.io | @swagitda_

We can adopt a faster tempo via Configuration
as Code (CaC) and automation like CI/CD

153

shortridge@hachyderm.io | @swagitda_

We can pursue design-based solutions with our
Ice Cream Cone Hierarchy and Paved Roads

154

shortridge@hachyderm.io | @swagitda_

We can adopt systems thinking, challenging our
“this will always be true” assumptions

155

shortridge@hachyderm.io | @swagitda_

We can cultivate tangible success outcomes that
leverage system signals for immediate feedback

156

shortridge@hachyderm.io | @swagitda_

We can fuel a feedback loop to gracefully
respond to attacks and adapt as attackers evolve

157

shortridge@hachyderm.io | @swagitda_

And that, comrades, is the resilience revolution.

158

shortridge@hachyderm.io | @swagitda_

Order the book today:
Amazon
Bookshop
& other major retailers

159

https://www.amazon.com/Security-Chaos-Engineering-Developing-Resilience/dp/1098113829
https://bookshop.org/p/books/security-chaos-engineering-developing-resilience-and-safety-at-speed-and-scale-aaron-rinehart/18793471?ean=9781098113827

shortridge@hachyderm.io | @swagitda_

/in/kellyshortridge

@swagitda_

@shortridge.bsky.social

160

shortridge@hachyderm.io

chat@shortridge.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160

