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FAST, EVER-EVOLVING 
DEFENDERS: 

THE RESILIENCE REVOLUTION
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There’s a pervasive sense that attackers 
continually outmaneuver us as defenders.
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Attackers are fast. They are ever-evolving. 
How could we possibly outmaneuver them?
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The answer is we become more like attackers: 
nimble, empirical, and curious.
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This talk is about revolution – a new paradigm 
for systems defense, grounded in resilience.
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Attacker 
Asymmetries
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How many of you have heard attackers only 
need to get right once and then they win?
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That’s a myth. They need to get right once for 
initial access then get it right every time after.
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So, what are attackers’ real advantages?
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1) Attackers have a faster operational tempo
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2) Attackers design, develop, and operate 
mechanisms to outmaneuver us
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3) Attackers research interconnections and 
interactions in systems
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4) Attackers have more tangible and actionable 
success metrics
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There is no reason why we can’t steal these 
advantages for ourselves as defenders.
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All of these reflect a foundation of resilience: 
the ability to prepare for, recover from, and 
adapt to adverse events.
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We can seize opportunities that grant us these 
same advantages via the resilience revolution.
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I. Faster Tempo
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Attackers pivot quickly in the face of adversity.
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Attackers also rapidly evolve their methods.
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We can achieve a faster tempo by adopting 
approaches from modern software engineering.

20



Configuration as Code
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CaC: the practice of declaring configurations 
through markup rather than manual processes
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Infrastructure-as-Code (IaC): the ability to create 
and manage infra via declarative specifications
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We generate the same environment every time, 
creating more reliable and predictable services.
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Organizations already use IaC for the audit trail 
it generates and making practices repeatable.
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Let’s take a whirlwind tour of IaC’s bountiful 
benefits for security programs:
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Faster Incident Response
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Automatically redeploy infrastructure when 
incidents happen… or even leading indicators
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Compromised workloads can be killed and 
redeployed as soon as an attack is detected
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Minimized misconfigurations
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NSA: misconfigurations are the most common 
cloud vuln; easy to exploit + highly prevalent
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IaC helps correct misconfigurations by users 
and automated systems (machines) alike
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Faster patching and 
security changes
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The real lesson of Equifax: patching processes 
must be usable, else procrastination is rational

34



shortridge@hachyderm.io | @swagitda_

IaC reduces friction for releasing patches, 
updates, or fixes & decentralizes the process

35



shortridge@hachyderm.io | @swagitda_

Protip: if an organizational process is unusable 
or cumbersome, it will be circumvented.
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Minimized 
 
   Environmental 
    
         Drift
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Environmental drift: configs or other attributes 
“drifting” into an inconsistent state
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Automatic infra versioning minimizes this drift; 
reversion and repeatability becomes easier
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Catching vulnerable 
configurations
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Status quo is authenticated scanning in 
production, which introduces new attack paths
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IaC removes that hazard, instead scanning the 
code files to find vulnerable assets or configs
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Stronger change 
control
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IaC introduces change control via SCM, 
enabling peer reviews on configs + changelog
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tl;dr IaC grants us a faster operational tempo in 
a variety of dimensions
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Automating Security 
Checks
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CI/CD accelerates dev and delivery of software 
features without hurting reliability or quality
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CI/CD pipeline: sets of (ideally automated) 
tasks that deliver a new software release
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Compiling the app (building) + testing code + 
deploying to test/staging + delivering to prod
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CI/CD is a tool to make software delivery more 
repeatable, predictable, and consistent.
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We can enforce invariants: achieve properties 
we want every time we build + deploy + deliver
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“Database servers should only make outgoing 
network connections to their replication peers 
and a short list of core services.”
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“Services must communicate over TLS and 
validate remote certificates.”
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“Only images built by our CI/CD system may 
run on the production Kubernetes cluster.”
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“Secrets should be retrieved on demand from 
our secrets store instead of being baked into 
source code or deployment images.”
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If you can ship software when you want, you 
can ship security fixes whenever you need to.
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Everything is recorded; you can set granular 
policy on who can deploy where and for what
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CI/CD can help us with patching and keeping 
dependencies up to date
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Automated CI/CD pipelines means patches can 
be tested and pushed to prod in hours vs. days
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Update-and-patch cycles become an automatic, 
daily affair, freeing time for other priorities
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tl;dr CI/CD lets us move faster and track the 
things we do – or revert (attackers can’t do so)

63



II. Design-based 
defense
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How should we prioritize the types of solutions 
we design? Are some better than others? 
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We want to design solutions that encourage the 
nimbleness that we envy in attackers.
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“Human fallibility is like gravity, weather, and 
terrain, just another foreseeable hazard.”
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Finite cognitive resources; competing 
pressures; exhaustion, stress, distraction…
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Kelly Lum pushed for HTTPS as the default for 
Tumblr blogs in 2016 (a design-based solution)
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Isolation, standardization, message buses, 
declarative dependencies, queues, failover…
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Modularity
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Modularity: allows structurally or functionally 
distinct parts to retain autonomy during periods 
of stress & allows for easier recovery from loss
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Unless components can fail independently, you 
don’t have modularity in the resilience sense.
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Queues and message brokers support 
modularity, each in different ways… 
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A queue adds a buffer; a message broker can 
replay and make return code non-blocking.
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Both tools standardize how services pass data 
around and provide a centralized view.
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If your systems are modular, you can create 
temporary “airgaps” (the “airlock approach”)
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Service A Processing service
(vulnerable)

Queue
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Service A Processing service
(vulnerable)

Processing service thrown 
“out the airlock”

Queue 
(growing)
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Service A
Processing service

(healed + 
redeployed)

Queue 
(draining)
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Modularity minimizes incident impact – think 
ransomware in serverless (it doesn’t happen)
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Modularity allows for basic encapsulation and 
separation of concerns… and supports isolation
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Here’s what it’s like to live in 2023 with a 
strong engineering culture:

84



shortridge@hachyderm.io | @swagitda_

RLBox: trap C code in a WebAssembly (Wasm) 
sandbox to isolate hazardous subcomponents
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Imagine not worrying about 0day anymore*.
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You’ve been so focused on AI you’ve missed 
groundbreaking things like this. It’s sad. :(
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In software, we’re lucky that we can isolate 
failure to handle unexpected interactions
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Start “boring”: set AWS security groups – or 
use serverless functions, containers, or VMs 
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If a vulnerable component is in a sandbox, the 
attacker faces a challenge to reach their goal
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Paved Roads
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Paved roads: well-integrated, supported 
solutions to common problems that allow 
humans to focus on their unique value creation
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Attackers have paved roads, like Cobalt Strike 
– it makes the easy way the pwnful way.
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Hyperscale nation states love building platforms 
and toolchains for their attack ops, too
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We can adopt a similar approach for protecting 
our software and systems from attack. 
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Netflix: Wall-E framework turns security 
requirements into filters to replace checklists

97



shortridge@hachyderm.io | @swagitda_

Question for when you return to work: What toil 
are you currently offloading onto your peers?
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“The bulk of the ‘going internet-facing’ checklist 
boiled down to one item: Will you use Wall-E?”

99



shortridge@hachyderm.io | @swagitda_

Block: enabling backend services to securely 
connect across business unit boundaries
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III. Systems Thinking
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Attackers think in systems while defenders think 
in components. It doesn’t have to be this way.
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Attackers search for your hidden “this will 
always be true” assumptions…
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Then they ask, “you say this will always be true; 
is that the case?” to break those assumptions
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Attackers target our “this will always be true” 
assumptions that exist all over our stack.

105



shortridge@hachyderm.io | @swagitda_

Parsing this string 
will always be fast
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Messages on this 
port will always 

be post-auth

107



shortridge@hachyderm.io | @swagitda_

An alert will always 
fire if a malicious 

executable appears
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The attacker thinks, “They say X here, but I can 
show that it isn’t quite true… interesting. Let’s 
keep looking to see if they’re just a little wrong 
or really wrong.” 
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We can adopt a similar process through 
decision trees and resilience stress testing
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We can refine our mental models continuously 
rather than waiting for attackers to exploit them
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Resilience stress tests help us identify the 
confluence of conditions where failure happens
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How do disruptions impact the entire system’s 
ability to recover and adapt?

115



shortridge@hachyderm.io | @swagitda_

We can move fast and observe how failure 
unfolds in our systems through experiments
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Verizon: deploy a pod containing known vulns 
on a target cluster to test security controls
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If we adopt this across the industry, vendors 
now must prove their products work… >:)
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IV. Tangible Success
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Attackers can measure tangible success and 
receive immediate feedback on their metrics
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Do they have access, how much access do they 
have, and have they accomplished their goals?
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Defenders struggle to create lucid, actionable 
metrics that offer immediate feedback

124



shortridge@hachyderm.io | @swagitda_

CISOs, your “risk coverage” and “time to 
detect” mean nothing, it’s embarrassing 
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System signals
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Reliability signals also benefit systems security
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Who deployed what and when? 
(like orchestrator and deployment logs)
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Who accessed what and when? 
(like cloud audit data)
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Database logs, billing records, netflow, 
production crash dumps, error messages…
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Traditional infosec doesn’t measure load, 
latency, performance, or throughput (a mistake)
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e.g. high CPU usage and memory shortages 
are signals about systems security
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Well-resourced attackers will monitor the system 
they’re attacking to avoid hitting limits or alarms
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Experiments can reveal what signals you should 
be collecting – don’t take visibility for granted
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So, what system signals can indicate attacks? 
Turns out SREs and DevOps are our bffs…
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Accept queue depth: attacker hijacking system 
execution (T1574) or process hollowing (T1055)
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Autoscale replica count: lateral movement 
(T1072); cryptomining; brute forcing (T1110)
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Billing alerts: cloud priv escalation (T1078); 
crypto-mining (T610); querying data for recon
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Cache hit rate (CHR): DoS; data exfiltration 
(T1567); brute forcing
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Disk usage, throughput, & IOPS: ransomware 
(T1486); staging data for exfiltration (T1074)
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DNS lookup errors: lateral movement, C&C, 
data exfil (T1071.004); DoS for ransom (T1498)
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Error rate: credential stuffing (T1110) or DoS
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Heartbeat response: endpoint DoS (T1499); 
restricting connections for evasion (T1562)
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Rate limit availability: SSRF (T1190); brute force 
logins (T1110)
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Replication lag: unauthorized access or 
modification (T1565); exploiting inconsistencies
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Resource consumption creeping towards max 
levels (CPU, memory): cryptominers; hijacking 
resources (T1496); in-memory attacks (T1055)
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Response time: DoS; unreliable exploit (T1190)
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Swap usage: data exfiltration (T1074.001)
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System log lag: stopping or deleting logs to 
conceal attack operations (T1070)
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We need our feedback loops to give us 
immediate sensory input like attackers get
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Viva Las Vegas 
la Révolution 
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We can outmaneuver attackers by becoming 
nimble, curious, and empirical as well
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We can adopt a faster tempo via Configuration 
as Code (CaC) and automation like CI/CD
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We can pursue design-based solutions with our 
Ice Cream Cone Hierarchy and Paved Roads
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We can adopt systems thinking, challenging our 
“this will always be true” assumptions
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We can cultivate tangible success outcomes that 
leverage system signals for immediate feedback
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We can fuel a feedback loop to gracefully 
respond to attacks and adapt as attackers evolve
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And that, comrades, is the resilience revolution.
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Order the book today:
Amazon
Bookshop
& other major retailers
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https://www.amazon.com/Security-Chaos-Engineering-Developing-Resilience/dp/1098113829
https://bookshop.org/p/books/security-chaos-engineering-developing-resilience-and-safety-at-speed-and-scale-aaron-rinehart/18793471?ean=9781098113827
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/in/kellyshortridge

@swagitda_

@shortridge.bsky.social
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shortridge@hachyderm.io

chat@shortridge.io
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