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Hi, I’m Kelly
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Hi, I’m Ryan
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“Hold out baits to entice the enemy. Feign 
disorder and crush him.”

— Sun Tzu 
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Deception is a powerful resilience tactic
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But innovation in deception has sucked.

Attackers remain thoroughly unchallenged.
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How do we build better deception systems 
given our goals, constraints, and tradeoffs?
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The answer is a new generation of 
deception systems: deception environments
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I. Exploiting attacker brains

II. The sucky status quo

III. Deux ex modern computing

IV. Designing deception environments

V. Harvesting potential

VI. Future opportunities
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I. Exploiting attacker 
brains (for fun & profit)
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Attackers (plural noun): 

humans whose objectives are met by 
accessing, destabilizing, stealing, or 
otherwise leveraging other humans’ 
computers without consent
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Goal: anticipate this type of negative shock 
when dev-ing & ops-ing systems
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1. Collect relevant info about attackers

2. Implement anticipatory mechanisms that 
impede the success of attack ops
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Sustaining resilience in complex systems 
requires a continual learning capacity

14



@swagitda_ @rpetrich

Deception supports this continual learning 
through attack observability
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Attack Observability: observing the 
interaction between attackers & systems
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Actual system behavior in production 
notoriously deviates from expectations
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You may have beliefs about attacker 
behavior, but does it match reality?
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To understand attackers, we need to 
understand how humans learn & decide
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Human learning & decision-making are 
tightly coupled == exploit opportunity
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Information asymmetry leads to core 
advantages for one “side” of the game
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Each side chooses a plan based on pre-
existing beliefs + learned experience
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Operators can use deception to amplify 
information asymmetries in their favor
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Make attacker experiences unreliable; 
poison the attacker’s learning process
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Deception systems help exacerbate info 
asymmetry in two dimensions…
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1. Expose real-world data on attackers’ 
thought processes (increasing the value of 
info for operators)
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2. Manipulating info to disrupt attackers’ 
abilities to learn & make decisions 
(reducing the value of info for attackers)
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II. The sucky status quo
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Honeypots are the status quo for the art of 
deception and never really grew up…
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What kinds of honeypots are there?
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Low interaction (LI) honeypots are basically 
cardboard-cutout decoys…
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Medium interaction (MI) honeypots imitate 
a specific system without meaningful depth
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High interaction (HI) honeypots are just 
vulnerable copies of services…
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LI & MI honeypots are ineffectual af at 
deceiving attackers so we can dismiss them

34



@swagitda_ @rpetrich

Even HI honeypots are unconvincing to 
attackers with a modicum of experience
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“Does the system feel real?” (no)

“Does it lack activity?” (yes)
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HI honeypots lack the regular flow of user 
traffic + wear & tear of real prod systems
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P.S. a fundamental flaw of honeypots is 
that they’re controlled by infosec people…
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III. Deux ex modern 
computing
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We really need a new generation of 
deception given its potential for resilience
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Deception Environments are this new gen 
and differ both in design & ownership
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Attackers have expertise in attacking 
systems – so no wonder the status quo fails
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Deception environments (DEs) are possible 
with new types of computing + new owners
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Goal of traditional honeypots = frequency 
of scanning tools or exploiting known vulns
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DEs observe attacker behavior through all 
operational stages + experiment on them
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What parts of modern infra help lower 
costs & improve deception design efficacy?
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Cloud computing – the ability to provision 
fully isolated infra with little expense
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Deployment automation + defining infra 
declaratively decreases ops overhead
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Virtualization advancements: isolation, 
observability, denser computing
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SDN proliferation enables isolated network 
topology dedicated to attackers
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Ownership should be based on systems 
design expertise, not security expertise
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SWEs can repurpose deployment templates 
to build unique, powerful deception envs
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IV. Designing deception 
environments
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DE design philosophy: repurpose the 
design, assets, & templates of a real system

54



@swagitda_ @rpetrich

Deception becomes a new env generated 
at the end of software delivery pipelines
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We can preempt attacker skepticism by 
designing a DE that feels “lived in”

56



@swagitda_ @rpetrich

Starting with the design of a real prod 
system == realism + more relevant insights
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The F.I.C. trilemma: fidelity, isolation, cost
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Fidelity: credibility to attackers and ability 
to support attack observability
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Attackers expect to see things like a service 
running, prod-like traffic, coordinating with 
other services, orchestration, monitoring…
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Deception systems need sufficient depth to 
stimulate extended attacker activity
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Goal: detailed & accurate record of attacker 
behavior to inform better system design
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Isolation: degree to which the deception 
system is isolated from the real env or data
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Goal: not jeopardizing availability of the 
real system or data privacy 
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Cost: computing infra + operational 
overhead required to deploy & maintain
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Goal: minimal operational burden; 
expensive means more unlikely to be used
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But there is a previously unexplored “sweet 
spot” for deception mechanisms…
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Replicombs: downgraded replicas of prod 
hosts with the same services seen in prod
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Replicomb vs. honeypot: impressive fidelity 
with an expansive range of attack behavior
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Honeyhives: full network of like-prod hosts 
to observe attacker movement x-system
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Modern IaC practices + inexpensive full 
isolation via cloud computing are key
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Honeyhives only need simulated load via a 
Replicomb as the initial entry point
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Okay, but how tf do you implement this in 
the real world of messy software eng?
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Actually, it’s no more difficult than setting 
up a new variant of an existing env tier…
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Replicomb is similar to a canary release.

Honeyhive is like a soak or load test env.
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But there are details to consider when 
implementing this in your org…
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Isolation boundaries: DEs need to be 
properly isolated from user traffic
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Virtualization, SDNs, cloud computing can 
help create fully isolated networks for DEs
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Discoverability: attackers need to find the 
DE for you to collect real data on their ops
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Honeypatching can support discoverability
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Tamper-free observation: tracing should be 
invisible to attackers + resistant to tamper
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Traffic archiving, memory & disk snapshots, 
process launch events, file activity…
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Accidental data exposure: you probably 
don’t want to violate GDPR with this
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Mitigation: anonymize or scramble traffic  
or generate synthetic data sets to replay
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Ownership: software eng teams can deploy 
and maintain DEs more effectively, sorry
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SWEs can treat attackers as a kindred 
engineer with the exact opposite goals
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V. Harvesting potential
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1. Resilient system design

2. Attacker tracing

3. Experimentation platform
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Resilient system design
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DEs let you explore how attacks impact 
systems to inform design improvements
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Attackers interact with monitoring, logging, 
alerting, failover, and service components 
in ways that stress their overall reliability
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DEs expose opportunities for architectural 
improvements in operability & simplicity
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Eng teams can leverage a feedback loop 
fueled by real-world evidence from DEs
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Attacker tracing
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Attack observability enables pragmatic 
threat modeling during design & planning
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In-the-wild evidence from DEs can help you 
validate or update your decision trees
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Decision trees + DEs can excavate hidden 
flows within systems proactively
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Attacker tracing also fuels experimentation: 
each branch is a chain of hypotheses
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Experimentation platform
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Experimentation can test the efficacy of 
monitoring or resilience measures
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Deception Environments become a tool in 
the Security Chaos Engineering arsenal
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Fidelity degradation experiments divulge 
how attackers react to different envs
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Swap standard components for substitutes 
to disrupt attack plans in prod (sow F.U.D.)
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Tune the difficulty of accessing the DE to 
study different types of attackers
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Augment honeyhives with honeytokens for 
flavor (like Thinkst’s AWS key canarytoken)

114



VI. Future opportunities



Just-in-time terraforming
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JIT creation of isolated deception VMs via 
copy-on-write or page deduplication
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Systems terraforming: reify an entire 
constellation of hosts upon connection
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Potential network & hypervisor tricks: 
unfreeze assets & fast-forward execution…
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Virtualization is one big lie to software—
why not extend this lie a little bit further?
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Instance emulation
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Full emulation of CSP APIs would facilitate 
DEs but also other operational benefits…
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Honeypatching at scale: redirect attackers 
towards a DE + deploy via update pipelines
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Anonymization via mirroring
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Extend traffic-mirroring tech to include 
data anonymization features (layer 7 ftw)
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Hypervisor-based observability
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Tracing & observability tools often execute 
with root privileges & are simple to subvert
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OSes could expose core events (process 
and file ops) over a common protocol…
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Burstable memory usage
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CSPs could support burstable performance 
instances via ballooning or swapped mem
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Temporarily migrate VMs across physical 
instances when their activity bursts…
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Per-account billing limits
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Per-account billing limits can restrict the 
amount of your $$$ attackers can spend
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CSPs have effective tools for isolation every 
resource except for customers’ wallets
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VI. Conclusion
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Imagine if SWEs could exploit attackers as 
much as attackers exploit defenders now!
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Deception envs allow you to bamboozle 
attackers for fun and profit (and resilience)
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And thus I clothe my naked villainy

With odd old ends stol'n out of Holy Writ;

And seem a saint when most I play the 
devil.

— Richard III, William Shakespeare
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@swagitda_

/in/kellyshortridge

chat@shortridge.io
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