











Deception is a powerful resilience tactic
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The answer is a new generation of
~deception systems: deception environments



. Exploiting attacker brains

. The sucky status quo

Il Deux ex modern computing

V. Designing deception environments
V. Harvesting potential

VI. Future opportunities
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. Exploiting attacker
brains (for fun & profit)



Attackers (plural noun):

humans whose objectives are met by
accessing, destabilizing, stealing, or
otherwise leveraging other humans'’
computers without consent
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Goal: anticipate this type of negative shock
when dev-ing & ops-ing systems



1. Collect relevant info about attackers

2. Implement anticipatory mechanisms that
impede the success of attack ops
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Sustaining resilience in complex systems
requires a continual learning capacity
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Deception supports this continual learning
through attack observability



Attack Observability: observing the
interaction between attackers & systems
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You may have beliefs about attacker
behavior, but does it match reality?
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Human learning & decision-making are
tightly coupled == exploit opportunity
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Each side chooses a plan based on pre-
existing beliefs + learned experience
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Operators can use deception to amplity
Information asymmetries in their favor



Make attacker experiences unreliable;
poison the attacker’s learning process
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1. Expose real-world data on attackers'’
thought processes (increasing the value of
info for operators)
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2. Manipulating info to disrupt attackers'’
abilities to learn & make decisions
(reducing the value of info for attackers)
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The sucky status quo



Honeypots are the status quo for the art of
deception and never really grew.up...
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What kinds of honeypots are there?
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Low interaction (LI) heneypots are basically
cardboard-cutout decoys...



Medium interaction (MIl) honeypots imitate
a specific system without meaningful depth
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High interaction (HI) honeypots are just
vulnerable copies of services...



LI & MI honeypots are ineffectual af at
deceiving attackers so we can dismiss them
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Even HI'honeypots are unconvincing to
attackers with a modicum of experience



“Does the system feel real?” (no)
“Does it lack activity?” (yes)
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HI'hoeneypots lack the regular flow of user
trafftic + wear & tear of real prod systems



P.S. a fundamental flaw of honeypots is
that they're controlled by infosec people...
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Deux ex modern
computing



We really need a new generation of
deception given its potential for resilience
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Attackers have expertise in attacking
systems - so no wonder the status quo fails
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Deception environments (DEs) are possible
with new types of computing + new owners



Goal of traditional honeypots = frequency
of scanning tools or exploiting known vulns
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What parts of modern infra help lower
costs & improve deception design efficacy?
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Cloud computing - the ability to provision
fully isolated infra with little expense



Deployment automation + defining infra
declaratively decreases ops overhead
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Virtualization advancements: isolation,
observability, denser computing



SDN proliferation enables isolated network
topology dedicated to attackers
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SWEs can repurpose deployment templates
to build unique, powerful deception envs
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/. Designing deception
environments



DE design philosophy: repurpose the
design, assets, & templates of a real system
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Deception becomes a new env generated
at the end of software delivery pipelines



We can preempt attacker skepticism by
designing a DE that feels “lived in”
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Starting with the design of a real prod
system == realism + more relevant insights



The F.I.C. trilemma: fidelity, isolation, cost
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FIGURE 1: THE FIG TRILEMMA FOR DECEPTI

fidelity

iIsolation
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Fidelity: credibility to attackers and ability
to support attack observability
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Attackers expect to see things like a service
running, prod-like traffic, coordinating with
other services, orchestration, monitoring...



Deception systems need sufficient depth to
stimulate extended attacker activity
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Goal: detailed & accurate record of attacker
behavior to inform better system design



Isolation: degree to which the deception
system is isolated from the real env or data
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Goal: not jeopardizing availability of the
real system or data privacy



Cost: computing infra + operational
overhead required to deploy & maintain
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Goal: minimal operational burden;
expensive means more unlikely to be used
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But there is a previously unexplored “sweet
Spot” for deception mechanisms...
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Replicombs: downgraded replicas of prod
hosts with the same services seen in prod
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Replicomb vs. honeypot: impressive fidelity
with an expansive range of attack behavior
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Honeyhives: full network of like-prod hosts
to observe attacker movement x-system
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FIGURE 6: EXAMPLE HONEYHIVE BASED ON A PRODUCTION ENVIRONMENT
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Modern laC practices + inexpensive full
isolation via cloud computing are key
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Honeyhives only need simulated load via a
Replicomb as the initial entry point



Okay, but how tf do you implement this in
the real world of messy software eng?
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Actually, it's no more ditficult than setting
up a new variant of an existing env tier...



Replicomb is similar to a canary release.
Honeyhive is like a soak or load test env.
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But there are details to consider when
implementing this in your org...
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Isolation boundaries: DES need to be
properly isolated from user traffic



Virtualization, SDNs, cloud computing can
help create fully isolated networks for DES
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Discoverability: attackers need to find the
DE for you to collect real data on their ops



Honeypatching can support discoverability
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Tamper-free observation: tracing snould be
Invisible to attackers + resistant to tamper



Traffic archiving, memory & disk snapshots,
process launch events, file activity...
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Accidental data exposure: you probably
don't want to violate GDPR with this



Mitigation: anonymize or scramble traffic
or generate synthetic data sets to replay
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Ownership: software eng teams can deploy
and maintain DEs more effectively, sorry



SWEs can treat attackers as a kindred
engineer with the exact opposite goals
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1. Resilient system design
2. Attacker tracing
3. Experimentation platform






DEs let you explore how attacks impact
systems to inform design improvements
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Attackers interact with monitoring, logging,
alerting, tfailover, and service components
in ways that stress their overall reliability
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DEs expose opportunities for architectural
Improvements in operability & simplicity



Eng teams can leverage a feedback loop
fueled by real-world evidence from DEs
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Attack observability enables pragmatic
threat modeling during design & planning
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In-the-wild evidence from DEs can help you
validate or update your decision trees
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Attacker tracing also fuels experimentation:
each branch is a chain of hypotheses
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Experimentation platform



Experimentation can test the efficacy of
monitoring or resilience measures
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Deception Environments become a tool in
the Security Chaos Engineering arsenal



Fidelity degradation experiments divulge
how attackers react to different envs
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Swap standard components for substitutes
to disrupt attack plans in prod (sow F.U.D.)



Tune the difficulty of accessing the DE to
study different types of attackers
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Augment honeyhives with honeytokens for
flavor (like Thinkst's AWS key canarytoken)









JIT creation of isolated deception VMs via
copy-on-write or page deduplication
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Potential network & hypervisor tricks:
unfreeze assets & fast-forward execution...

1% @swagitda_  @rpetrich



Virtualization is one big lie to software—
why not extend this lie a little bit further?
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Full emulation of CSP APIs would facilitate
DEs but also other operational benetfits...
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Honeypatching at scale: redirect attackers
towards a DE + deploy via update pipelines
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Extend traffic-mirroring tech to include
data anonymization features (layer 7 ftw)
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Tracing & observability tools often execute
with root privileges & are simple to subvert
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OSes could expose core events (process
and file ops) over a common protocol...
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CSPs could support burstable performance
instances via ballooning or swapped mem
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Temporarily migrate VMs across physical
instances when their activity bursts...
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Per-account billing limits can restrict the
amount of your $$$ attackers can spend
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CSPs have effective tools for isolation every
resource except for customers' wallets
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And thus | clothe my naked villainy
With odd old ends stol'n out of Holy Writ;

And seem a saint when most | play the
devil.

— Richard Ill, William Shakespeare
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