
LAMBOOZLING ATTACKERS

Kelly Shortridge (@swagitda_)

Ryan Petrich (@rpetrich) Summercon 2022

@swagitda_ @rpetrich

Hi, I’m Kelly

@swagitda_ @rpetrich

Hi, I’m Ryan

@swagitda_ @rpetrich

“Hold out baits to entice the enemy. Feign
disorder and crush him.”

— Sun Tzu

4

@swagitda_ @rpetrich

Deception is a powerful resilience tactic

5

@swagitda_ @rpetrich

But innovation in deception has sucked.

Attackers remain thoroughly unchallenged.

6

@swagitda_ @rpetrich

How do we build better deception systems
given our goals, constraints, and tradeoffs?

7

@swagitda_ @rpetrich

The answer is a new generation of
deception systems: deception environments

8

@swagitda_ @rpetrich

I. Exploiting attacker brains

II. The sucky status quo

III. Deux ex modern computing

IV. Designing deception environments

V. Harvesting potential

VI. Future opportunities

9

I. Exploiting attacker
brains (for fun & profit)

@swagitda_ @rpetrich

Attackers (plural noun):

humans whose objectives are met by
accessing, destabilizing, stealing, or
otherwise leveraging other humans’
computers without consent

11

@swagitda_ @rpetrich

Goal: anticipate this type of negative shock
when dev-ing & ops-ing systems

12

@swagitda_ @rpetrich

1. Collect relevant info about attackers

2. Implement anticipatory mechanisms that
impede the success of attack ops

13

@swagitda_ @rpetrich

Sustaining resilience in complex systems
requires a continual learning capacity

14

@swagitda_ @rpetrich

Deception supports this continual learning
through attack observability

15

@swagitda_ @rpetrich

Attack Observability: observing the
interaction between attackers & systems

16

@swagitda_ @rpetrich

Actual system behavior in production
notoriously deviates from expectations

17

@swagitda_ @rpetrich

You may have beliefs about attacker
behavior, but does it match reality?

18

@swagitda_ @rpetrich

To understand attackers, we need to
understand how humans learn & decide

19

@swagitda_ @rpetrich

Human learning & decision-making are
tightly coupled == exploit opportunity

20

@swagitda_ @rpetrich

Information asymmetry leads to core
advantages for one “side” of the game

21

@swagitda_ @rpetrich

Each side chooses a plan based on pre-
existing beliefs + learned experience

22

@swagitda_ @rpetrich

Operators can use deception to amplify
information asymmetries in their favor

23

@swagitda_ @rpetrich

Make attacker experiences unreliable;
poison the attacker’s learning process

24

@swagitda_ @rpetrich

Deception systems help exacerbate info
asymmetry in two dimensions…

25

@swagitda_ @rpetrich

1. Expose real-world data on attackers’
thought processes (increasing the value of
info for operators)

26

@swagitda_ @rpetrich

2. Manipulating info to disrupt attackers’
abilities to learn & make decisions
(reducing the value of info for attackers)

27

II. The sucky status quo

@swagitda_ @rpetrich

Honeypots are the status quo for the art of
deception and never really grew up…

29

@swagitda_ @rpetrich

What kinds of honeypots are there?

30

@swagitda_ @rpetrich

Low interaction (LI) honeypots are basically
cardboard-cutout decoys…

31

@swagitda_ @rpetrich

Medium interaction (MI) honeypots imitate
a specific system without meaningful depth

32

@swagitda_ @rpetrich

High interaction (HI) honeypots are just
vulnerable copies of services…

33

@swagitda_ @rpetrich

LI & MI honeypots are ineffectual af at
deceiving attackers so we can dismiss them

34

@swagitda_ @rpetrich

Even HI honeypots are unconvincing to
attackers with a modicum of experience

35

@swagitda_ @rpetrich

“Does the system feel real?” (no)

“Does it lack activity?” (yes)

36

@swagitda_ @rpetrich

HI honeypots lack the regular flow of user
traffic + wear & tear of real prod systems

37

@swagitda_ @rpetrich

P.S. a fundamental flaw of honeypots is
that they’re controlled by infosec people…

38

III. Deux ex modern
computing

@swagitda_ @rpetrich

We really need a new generation of
deception given its potential for resilience

40

@swagitda_ @rpetrich

Deception Environments are this new gen
and differ both in design & ownership

41

@swagitda_ @rpetrich

Attackers have expertise in attacking
systems – so no wonder the status quo fails

42

@swagitda_ @rpetrich

Deception environments (DEs) are possible
with new types of computing + new owners

43

@swagitda_ @rpetrich

Goal of traditional honeypots = frequency
of scanning tools or exploiting known vulns

44

@swagitda_ @rpetrich

DEs observe attacker behavior through all
operational stages + experiment on them

45

@swagitda_ @rpetrich

What parts of modern infra help lower
costs & improve deception design efficacy?

46

@swagitda_ @rpetrich

Cloud computing – the ability to provision
fully isolated infra with little expense

47

@swagitda_ @rpetrich

Deployment automation + defining infra
declaratively decreases ops overhead

48

@swagitda_ @rpetrich

Virtualization advancements: isolation,
observability, denser computing

49

@swagitda_ @rpetrich

SDN proliferation enables isolated network
topology dedicated to attackers

50

@swagitda_ @rpetrich

Ownership should be based on systems
design expertise, not security expertise

51

@swagitda_ @rpetrich

SWEs can repurpose deployment templates
to build unique, powerful deception envs

52

IV. Designing deception
environments

@swagitda_ @rpetrich

DE design philosophy: repurpose the
design, assets, & templates of a real system

54

@swagitda_ @rpetrich

Deception becomes a new env generated
at the end of software delivery pipelines

55

@swagitda_ @rpetrich

We can preempt attacker skepticism by
designing a DE that feels “lived in”

56

@swagitda_ @rpetrich

Starting with the design of a real prod
system == realism + more relevant insights

57

@swagitda_ @rpetrich

The F.I.C. trilemma: fidelity, isolation, cost

58

@swagitda_ @rpetrich59

@swagitda_ @rpetrich

Fidelity: credibility to attackers and ability
to support attack observability

60

@swagitda_ @rpetrich

Attackers expect to see things like a service
running, prod-like traffic, coordinating with
other services, orchestration, monitoring…

61

@swagitda_ @rpetrich

Deception systems need sufficient depth to
stimulate extended attacker activity

62

@swagitda_ @rpetrich

Goal: detailed & accurate record of attacker
behavior to inform better system design

63

@swagitda_ @rpetrich

Isolation: degree to which the deception
system is isolated from the real env or data

64

@swagitda_ @rpetrich

Goal: not jeopardizing availability of the
real system or data privacy

65

@swagitda_ @rpetrich

Cost: computing infra + operational
overhead required to deploy & maintain

66

@swagitda_ @rpetrich

Goal: minimal operational burden;
expensive means more unlikely to be used

67

@swagitda_ @rpetrich68

@swagitda_ @rpetrich69

@swagitda_ @rpetrich

But there is a previously unexplored “sweet
spot” for deception mechanisms…

70

@swagitda_ @rpetrich71

@swagitda_ @rpetrich

Replicombs: downgraded replicas of prod
hosts with the same services seen in prod

72

@swagitda_ @rpetrich73

@swagitda_ @rpetrich

Replicomb vs. honeypot: impressive fidelity
with an expansive range of attack behavior

74

@swagitda_ @rpetrich75

@swagitda_ @rpetrich

Honeyhives: full network of like-prod hosts
to observe attacker movement x-system

76

@swagitda_ @rpetrich77

@swagitda_ @rpetrich

Modern IaC practices + inexpensive full
isolation via cloud computing are key

78

@swagitda_ @rpetrich

Honeyhives only need simulated load via a
Replicomb as the initial entry point

79

@swagitda_ @rpetrich

Okay, but how tf do you implement this in
the real world of messy software eng?

80

@swagitda_ @rpetrich

Actually, it’s no more difficult than setting
up a new variant of an existing env tier…

81

@swagitda_ @rpetrich

Replicomb is similar to a canary release.

Honeyhive is like a soak or load test env.

82

@swagitda_ @rpetrich

But there are details to consider when
implementing this in your org…

83

@swagitda_ @rpetrich

Isolation boundaries: DEs need to be
properly isolated from user traffic

84

@swagitda_ @rpetrich

Virtualization, SDNs, cloud computing can
help create fully isolated networks for DEs

85

@swagitda_ @rpetrich

Discoverability: attackers need to find the
DE for you to collect real data on their ops

86

@swagitda_ @rpetrich

Honeypatching can support discoverability

87

@swagitda_ @rpetrich88

@swagitda_ @rpetrich

Tamper-free observation: tracing should be
invisible to attackers + resistant to tamper

89

@swagitda_ @rpetrich

Traffic archiving, memory & disk snapshots,
process launch events, file activity…

90

@swagitda_ @rpetrich

Accidental data exposure: you probably
don’t want to violate GDPR with this

91

@swagitda_ @rpetrich

Mitigation: anonymize or scramble traffic
or generate synthetic data sets to replay

92

@swagitda_ @rpetrich

Ownership: software eng teams can deploy
and maintain DEs more effectively, sorry

93

@swagitda_ @rpetrich

SWEs can treat attackers as a kindred
engineer with the exact opposite goals

94

V. Harvesting potential

@swagitda_ @rpetrich

1. Resilient system design

2. Attacker tracing

3. Experimentation platform

96

Resilient system design

@swagitda_ @rpetrich

DEs let you explore how attacks impact
systems to inform design improvements

98

@swagitda_ @rpetrich

Attackers interact with monitoring, logging,
alerting, failover, and service components
in ways that stress their overall reliability

99

@swagitda_ @rpetrich

DEs expose opportunities for architectural
improvements in operability & simplicity

100

@swagitda_ @rpetrich

Eng teams can leverage a feedback loop
fueled by real-world evidence from DEs

101

Attacker tracing

@swagitda_ @rpetrich

Attack observability enables pragmatic
threat modeling during design & planning

103

@swagitda_ @rpetrich

In-the-wild evidence from DEs can help you
validate or update your decision trees

104

@swagitda_ @rpetrich105

@swagitda_ @rpetrich

Decision trees + DEs can excavate hidden
flows within systems proactively

106

@swagitda_ @rpetrich

Attacker tracing also fuels experimentation:
each branch is a chain of hypotheses

107

Experimentation platform

@swagitda_ @rpetrich

Experimentation can test the efficacy of
monitoring or resilience measures

109

@swagitda_ @rpetrich

Deception Environments become a tool in
the Security Chaos Engineering arsenal

110

@swagitda_ @rpetrich

Fidelity degradation experiments divulge
how attackers react to different envs

111

@swagitda_ @rpetrich

Swap standard components for substitutes
to disrupt attack plans in prod (sow F.U.D.)

112

@swagitda_ @rpetrich

Tune the difficulty of accessing the DE to
study different types of attackers

113

@swagitda_ @rpetrich

Augment honeyhives with honeytokens for
flavor (like Thinkst’s AWS key canarytoken)

114

VI. Future opportunities

Just-in-time terraforming

@swagitda_ @rpetrich

JIT creation of isolated deception VMs via
copy-on-write or page deduplication

117

@swagitda_ @rpetrich

Systems terraforming: reify an entire
constellation of hosts upon connection

118

@swagitda_ @rpetrich

Potential network & hypervisor tricks:
unfreeze assets & fast-forward execution…

119

@swagitda_ @rpetrich

Virtualization is one big lie to software—
why not extend this lie a little bit further?

120

Instance emulation

@swagitda_ @rpetrich

Full emulation of CSP APIs would facilitate
DEs but also other operational benefits…

122

@swagitda_ @rpetrich

Honeypatching at scale: redirect attackers
towards a DE + deploy via update pipelines

123

Anonymization via mirroring

@swagitda_ @rpetrich

Extend traffic-mirroring tech to include
data anonymization features (layer 7 ftw)

125

Hypervisor-based observability

@swagitda_ @rpetrich

Tracing & observability tools often execute
with root privileges & are simple to subvert

127

@swagitda_ @rpetrich

OSes could expose core events (process
and file ops) over a common protocol…

128

Burstable memory usage

@swagitda_ @rpetrich

CSPs could support burstable performance
instances via ballooning or swapped mem

130

@swagitda_ @rpetrich

Temporarily migrate VMs across physical
instances when their activity bursts…

131

Per-account billing limits

@swagitda_ @rpetrich

Per-account billing limits can restrict the
amount of your $$$ attackers can spend

133

@swagitda_ @rpetrich

CSPs have effective tools for isolation every
resource except for customers’ wallets

134

VI. Conclusion

@swagitda_ @rpetrich

Imagine if SWEs could exploit attackers as
much as attackers exploit defenders now!

136

@swagitda_ @rpetrich

Deception envs allow you to bamboozle
attackers for fun and profit (and resilience)

137

@swagitda_ @rpetrich

And thus I clothe my naked villainy

With odd old ends stol'n out of Holy Writ;

And seem a saint when most I play the
devil.

— Richard III, William Shakespeare

138

@swagitda_ @rpetrich

@swagitda_

/in/kellyshortridge

chat@shortridge.io

139

@rpetrich

/in/rpetrich

rpetrich@gmail.com

