

Deception is a powerful resilience tactic

L]

-y ' Y Sy Fa ‘,_-"‘ ' - ; 5 3 = < = ‘b‘ ;; s . -# i‘
wipd B DU SIVEIR LSSl na in S L
- @q / Q Y ;(;)..‘ ‘rfs 4 p7 B . . , \ \ \ \ | Cs(\ D ' 2 ’f\\ ﬂ ., " .'-:' 1
e \)] . - ~ | . | ! : ‘. q -1‘*1L g : N
g . L, i | . : 3 l Ty o & STh R L 1] e . ’ ¥

2 AR R A\SE

b

¥
%
4 ‘

y

etter_ deception systems

NS h\é\rﬂtra deotrs?
,‘ \\

The answer is a new generation of
~deception systems: deception environments

. Exploiting attacker brains

. The sucky status quo

Il Deux ex modern computing

V. Designing deception environments
V. Harvesting potential

VI. Future opportunities

9 @swagitda_ @rpetrich

. Exploiting attacker
brains (for fun & profit)

Attackers (plural noun):

humans whose objectives are met by
accessing, destabilizing, stealing, or
otherwise leveraging other humans'’
computers without consent

1l @swagitda_ @rpetrich

Goal: anticipate this type of negative shock
when dev-ing & ops-ing systems

1. Collect relevant info about attackers

2. Implement anticipatory mechanisms that
impede the success of attack ops

13 @swagitda_ @rpetrich

Sustaining resilience in complex systems
requires a continual learning capacity

14 @swagitda_ @rpetrich

Deception supports this continual learning
through attack observability

Attack Observability: observing the
interaction between attackers & systems

16 @swagitda_ @rpetrich

NE
<

— e
)
O =
N N
0 AaA)
lﬂ 1 J
q) ©

0O
—
L

You may have beliefs about attacker
behavior, but does it match reality?

18 @swagitda_ @rpetrich

Human learning & decision-making are
tightly coupled == exploit opportunity

20 @swagitda_ @rpetrich

I

'NnTformatic

advant rrg%

Each side chooses a plan based on pre-
existing beliefs + learned experience

22 @swagitda_ @rpetrich

Operators can use deception to amplity
Information asymmetries in their favor

Make attacker experiences unreliable;
poison the attacker’s learning process

24 @swagitda_ @rpetrich

T

N
“'Decy pt|6 \N\'*‘

N two

1. Expose real-world data on attackers'’
thought processes (increasing the value of
info for operators)

26 @swagitda_ @rpetrich

2. Manipulating info to disrupt attackers'’
abilities to learn & make decisions
(reducing the value of info for attackers)

27 @swagitda_ @rpetrich

The sucky status quo

Honeypots are the status quo for the art of
deception and never really grew.up...

29

What kinds of honeypots are there?

30 @swagitda_ @rpetrich

Low interaction (LI) heneypots are basically
cardboard-cutout decoys...

Medium interaction (MIl) honeypots imitate
a specific system without meaningful depth

32 @swagitda_ @rpetrich

High interaction (HI) honeypots are just
vulnerable copies of services...

LI & MI honeypots are ineffectual af at
deceiving attackers so we can dismiss them

34 @swagitda_ @rpetrich

Even HI'honeypots are unconvincing to
attackers with a modicum of experience

“Does the system feel real?” (no)
“Does it lack activity?” (yes)

Kle @swagitda_ @rpetrich

HI'hoeneypots lack the regular flow of user
trafftic + wear & tear of real prod systems

P.S. a fundamental flaw of honeypots is
that they're controlled by infosec people...

38 @swagitda_ @rpetrich

Deux ex modern
computing

We really need a new generation of
deception given its potential for resilience

40 @swagitda_ @rpetrich

FonmMmen

[lon ERVI

P
L]

Attackers have expertise in attacking
systems - so no wonder the status quo fails

42 @swagitda_ @rpetrich

Deception environments (DEs) are possible
with new types of computing + new owners

Goal of traditional honeypots = frequency
of scanning tools or exploiting known vulns

44 @swagitda_ @rpetrich

b}

%o
1)
N

— 4

=

N
1]

D

|

C

|

o

IO

o
ot

OPEI

What parts of modern infra help lower
costs & improve deception design efficacy?

46 @swagitda_ @rpetrich

Cloud computing - the ability to provision
fully isolated infra with little expense

Deployment automation + defining infra
declaratively decreases ops overhead

48 @swagitda_ @rpetrich

Virtualization advancements: isolation,
observability, denser computing

SDN proliferation enables isolated network
topology dedicated to attackers

50 @swagitda_ @rpetrich

SWEs can repurpose deployment templates
to build unique, powerful deception envs

52 @swagitda_ @rpetrich

/. Designing deception
environments

DE design philosophy: repurpose the
design, assets, & templates of a real system

54 @swagitda_ @rpetrich

Deception becomes a new env generated
at the end of software delivery pipelines

We can preempt attacker skepticism by
designing a DE that feels “lived in”

56 @swagitda_ @rpetrich

Starting with the design of a real prod
system == realism + more relevant insights

The F.I.C. trilemma: fidelity, isolation, cost

58 @swagitda_ @rpetrich

FIGURE 1: THE FIG TRILEMMA FOR DECEPTI

fidelity

iIsolation

@swagitda_ @rpetrich

Fidelity: credibility to attackers and ability
to support attack observability

60 @swagitda_ @rpetrich

Attackers expect to see things like a service
running, prod-like traffic, coordinating with
other services, orchestration, monitoring...

Deception systems need sufficient depth to
stimulate extended attacker activity

62 @swagitda_ @rpetrich

Goal: detailed & accurate record of attacker
behavior to inform better system design

Isolation: degree to which the deception
system is isolated from the real env or data

64 @swagitda_ @rpetrich

Goal: not jeopardizing availability of the
real system or data privacy

Cost: computing infra + operational
overhead required to deploy & maintain

66 @swagitda_ @rpetrich

Goal: minimal operational burden;
expensive means more unlikely to be used

fidelity

dedicated real

deception production
datacenter systems

isolation
low interaction

Jonoa_ @rpetrich

fidelity

dedicated real

deception production
datacenter systems

Hl honeypots

Ml honeypots
Isolation
low interaction
honeypots

®ewagitda_ @rpetrich

But there is a previously unexplored “sweet
Spot” for deception mechanisms...

fidelity

_ , Honeyhives
dedicated deception real production

datacenter Replicombs systems

9 <
% Eweeig@g
HI honeypots
Ml honeypots
Isolation cost
low interaction
honeypots

gWagitda_ @rpetrich

Replicombs: downgraded replicas of prod
hosts with the same services seen in prod

72 @swagitda_ @rpetrich

load generation
server

GoReplay !

application server

new component‘

Sepiicom® Chef JBoss [' Nagios

external
Postgres auth service

(copy) (test
account)

@swagitda_

@rpetrich

Replicomb vs. honeypot: impressive fidelity
with an expansive range of attack behavior

fidelity

_ , Honeyhives
dedicated deception real production

datacenter Replicombs systems

9 <
% Eweeig@g
HI honeypots
Ml honeypots
Isolation cost
low interaction
honeypots

gWagitda_ @rpetrich

Honeyhives: full network of like-prod hosts
to observe attacker movement x-system

76 @swagitda_ @rpetrich

FIGURE 6: EXAMPLE HONEYHIVE BASED ON A PRODUCTION ENVIRONMENT

production environment

load balancer

Chef '
server ™= Chef client ' HAProxy § Magios client

Nagios
cloud

web

server
1 application server

Chef client JBoss | Magios client

file
storage external

Postgres auth
senice
database

server

Honeyhive 1

VS.
deception environment

load generation server GoReplay

load balancer

Chef '
-z.ervfer Chef client ' HAF’rD:-:j,ri Magios client

Nagius
cloud

web

server -
application server

Chef client ' JBoss

Magios client

file
stora EE external

Postgres auth
service
database

server

@swagitda_ @rpetrich

Modern laC practices + inexpensive full
isolation via cloud computing are key

78 @swagitda_ @rpetrich

Honeyhives only need simulated load via a
Replicomb as the initial entry point

Okay, but how tf do you implement this in
the real world of messy software eng?

80 @swagitda_ @rpetrich

Actually, it's no more ditficult than setting
up a new variant of an existing env tier...

Replicomb is similar to a canary release.
Honeyhive is like a soak or load test env.

82 @swagitda_ @rpetrich

But there are details to consider when
implementing this in your org...

83 @swagitda_ @rpetrich

Isolation boundaries: DES need to be
properly isolated from user traffic

Virtualization, SDNs, cloud computing can
help create fully isolated networks for DES

85 @swagitda_ @rpetrich

Discoverability: attackers need to find the
DE for you to collect real data on their ops

Honeypatching can support discoverability

87 @swagitda_ @rpetrich

production environment deception environment

CDN load generation
server new

G{)REPLE}" component

load balancer

honeypatch

web app ‘ application server

Chef ' JBoss | Nagios

e

external
file Postgres Postgres auth service
storage (copy) (test
account]

dswagitda_ @rpetrich

Tamper-free observation: tracing snould be
Invisible to attackers + resistant to tamper

Traffic archiving, memory & disk snapshots,
process launch events, file activity...

90 @swagitda_ @rpetrich

Accidental data exposure: you probably
don't want to violate GDPR with this

Mitigation: anonymize or scramble traffic
or generate synthetic data sets to replay

92 @swagitda_ @rpetrich

Ownership: software eng teams can deploy
and maintain DEs more effectively, sorry

SWEs can treat attackers as a kindred
engineer with the exact opposite goals

94 @swagitda_ @rpetrich

1. Resilient system design
2. Attacker tracing
3. Experimentation platform

DEs let you explore how attacks impact
systems to inform design improvements

98 @swagitda_ @rpetrich

Attackers interact with monitoring, logging,
alerting, tfailover, and service components
in ways that stress their overall reliability

99 @swagitda_ @rpetrich

DEs expose opportunities for architectural
Improvements in operability & simplicity

Eng teams can leverage a feedback loop
fueled by real-world evidence from DEs

101 @swagitda_ @rpetrich

Attack observability enables pragmatic
threat modeling during design & planning

103 @swagitda_ @rpetrich

In-the-wild evidence from DEs can help you
validate or update your decision trees

Text Editor

facts
wayback

reality
public_bucket

bucket_search
subsystem_with_access

compromise_user_creds

attacks
bucket_search

disallow crawling
brute_force

private bucket
phishing

private bucket
internal_only_bucket

access_control server side
compromise_user_creds

brute_force
phishing
analyze web client

lock_down_acls
compromise_admin_creds

phishing
compromise aws_creds

phishing
intercept_2fa

2fa
ssh_to_public_machine

compromise_admin_creds
compromise_aws_creds
intercept_2fa

lateral movement to machine with_ access

ip_allowlist_for_ssh
compromise presigned

phishing
compromise quickly

Inspired by and with example taken from Kelly Shortridge's

Download .svg Download .dot

(Example) Attack Tree for S3 Bucket with Video Recordings

#yuluse;/,z"'
»
API| cache
(e.g. Wayback
Machine)

Disallow crawling Auth required / ACLS
on site maps (private bucket)

/

/

4

AWS public buckets
search

credentials creds admin creds

ﬁfymnséq
i A

#ymoseJ

S5H to an accessible
machine

53 bucket set fo
public

Y

Subsystem with
access to bucket

data

Lock down web client
with creds / ACLs

Lateral movement to
machine with access
to target bucket

[

Manually analyze
#yolose: web client for

]

Brute force Phishing Recon on 83 buckets

Compromise user Compromise admin Compromise AWS

presigned URLS

/

Make URL short lived

»

#yolose \ Compromise URL
\ within M time period

Find systems with
R/MW access to target
bucket

Compromise

s \ .

\ / .

|I &

No public system hj
R/W access

(internal anly)

‘ Exploit known 3rd
party library vulns

l

3rd party library
checking / vuln
scanning

“a
Disallow the use of
URLs to access Buy Oday
buckets

Manual discovery of

Exploit prevention
/ detection

l

Oday in AWS
multitenant
systems.

A

Use single tenant

AAIe Lok

Attacker tracing also fuels experimentation:
each branch is a chain of hypotheses

107 @swagitda_ @rpetrich

Experimentation platform

Experimentation can test the efficacy of
monitoring or resilience measures

109 @swagitda_ @rpetrich

Deception Environments become a tool in
the Security Chaos Engineering arsenal

Fidelity degradation experiments divulge
how attackers react to different envs

1 @swagitda_ @rpetrich

Swap standard components for substitutes
to disrupt attack plans in prod (sow F.U.D.)

Tune the difficulty of accessing the DE to
study different types of attackers

@swagitda_ @rpetrich

Augment honeyhives with honeytokens for
flavor (like Thinkst's AWS key canarytoken)

JIT creation of isolated deception VMs via
copy-on-write or page deduplication

7 @swagitda_ @rpetrich

Potential network & hypervisor tricks:
unfreeze assets & fast-forward execution...

1% @swagitda_ @rpetrich

Virtualization is one big lie to software—
why not extend this lie a little bit further?

120 @swagitda_ @rpetrich

Full emulation of CSP APIs would facilitate
DEs but also other operational benetfits...

122 @swagitda_ @rpetrich

Honeypatching at scale: redirect attackers
towards a DE + deploy via update pipelines

123 @swagitda_ @rpetrich

Extend traffic-mirroring tech to include
data anonymization features (layer 7 ftw)

125 @swagitda_ @rpetrich

Tracing & observability tools often execute
with root privileges & are simple to subvert

127 @swagitda_ @rpetrich

OSes could expose core events (process
and file ops) over a common protocol...

128 @swagitda_ @rpetrich

CSPs could support burstable performance
instances via ballooning or swapped mem

130 @swagitda_ @rpetrich

Temporarily migrate VMs across physical
instances when their activity bursts...

131 @swagitda_ @rpetrich

Per-account billing limits can restrict the
amount of your $$$ attackers can spend

133 @swagitda_ @rpetrich

CSPs have effective tools for isolation every
resource except for customers' wallets

134 @swagitda_ @rpetrich

magine if SV ',,J;Lem,{r)r attacl ors as
s exploit defenders now!

—r

SNonds

much as attacker

»
y
- -

e o

I , | by o e L .
| CI1VS)VV /QU LO DAITIDOOZIE

'Or Tun and prortit (ana resilience)

And thus | clothe my naked villainy
With odd old ends stol'n out of Holy Writ;

And seem a saint when most | play the
devil.

— Richard Ill, William Shakespeare

@swagitda_ @rpetrich

/in/kellyshortridge /in/rpetrich

chat@shortridge.io rpetrich@gmail.com

139

