FROM CATASTROPHE TO
CHAOS IN PRODUCTION

Kelly Shortridge (@swagitda.) GOTOpia Chaos Engineering Day 2021



O W

Hi, I’m Kelly



Production is where valued is realized,
so we should probably keep it safe



Failure in production feels frightening



—_—

—

...but it doesn't ha}e% end in disaster



How can we harness failure as a learning
opportunity to make production safer?



I. Failure 1n Production

II. Security Chaos
Engineering 1n Production

@swagitda_



I. Failure 1n
Production



Defenders tend to think in components
while attackers think«in'systems



Component-level vs. system-level -
faults are different than failures

19 @swagitda_



Faults: “one component of the system
deviating from its spec”

@swagitda_



Failure: “the system as a whole stops
providing the required service to users”

12 @swagitda_



You will never be able to eliminate the
chance of faults in your systems



Prevention only goes so far; too many
variables are out of your control

14 @swagitda_



A perfectly patched container can still be
pwned if there’'s anon access in K8s

@swagitda_



Scan all the code for vulns... then
attackers compromise the code scanner

16 @swagitda_



Yubikeys for GitHub... then attackers
abuse Jenkin's anon script console

@swagitda_



‘Failure in productionmanif}\e:stsin a
mess of multiplicitous manners : =

18



Private / public clouds, VPS, VMs,
containers, serverless, computerless...

19 @swagitda_



Production environments are complex
systems full of interrelated components

20



Failure is like a tapestry of interwoven
strands that can spread fire to the rest

@swagitda_



There is a dizzying array of activity that
can jeopardize production operations



Two key types: deliberately malicious
(attackers) + accidentally careless (devs)

@swagitda_



Sometimes they overlap! Like attaching
a debugger to a prod system

@swagitda_



Attackers with privileged creds &
“insider threats” are basically the same

@swagitda_



Most prod infrastructure runs on Linux,
where everything is a file

26 @swagitda_



t’,
P e
’#

‘ﬁ;ai‘%\\ k. ' iy

Y
Y

\

~This means failure in prod often bubbles
B r g



Example 1: Log files are deleted or
tampered - your ops is likely screwed

@swagitda_



Example 2: Changes to boot files, root
cert stores, or SSH keys - stability snafus

@swagitda_



Example 3: Resource limits are disabled
- highly sus and doubtless disastrous

@swagitda_



Confronted with such complexity, how
can we constructively cope?

31 @swagitda_



II. Security Chaos
Engineering 1n Prod



Our goal is to prevent faults from
causing failures as much as we can

33 @swagitda_



Purposefully triggering faults lets you
realize and test your success towards it



Security Chaos Engineering: Let's
harness failure to build knowledge

@swagitda_



Conducting experiments generates
evidence & builds muscle memory

36 @swagitda_



Make incident response boring because
it feels routine after repeated practice

@swagitda_



< Jgetween

o cut én{or%@n

compo\’ﬂ‘ents\;m

38



Learning how your systems respond to
failure requires testing in prod itself

@swagitda_



...but you can start in staging to build
confidence before migrating to prod

@swagitda_



What SCE experiments should you try?



Example prioritization matrix of attack goals

Application source
code
Process docs

Nice to have

_ Internal business
intelligence telemetry

Stolen content

Money

Production revenue-
generating service

Priority
Sensitive consumer

data
Compute resources

SKU # service
Error code AP|

Waste of time

Color scheme
config file

Slackmoji database

w
=
m
>
™
c
o5
=
m
L]
c
£
(=]

Research/patents
Lists of employees
Deprioritize
Expense systems

Secret “menus”/
customer content

»

Attacker value

>

Figure 2-5. Example prioritization matrix of assets relative to attacker

value and organizational value.

@swagitda_




Let's explore some examples...

@swagitda_



Example 1: Create & execute a new file
in a container

y



How does your container respond to
new file exec? Does it affect the cluster?

us @swagitda_



. Example 2: Inject program crashes

U6



Does your node restart itself? How
qguickly can you redeploy post-crash?

@swagitda_



Example 3: Disable resource limits (CPU,
file descriptors, memory, restarts, etc.)



Can an infinite script take up resources?
Do slower response times propagate?

ug @swagitda_



Example 4: Disable access to DNS



How reliant are your systems on
external DNS? Do you have a fallback?

51 @swagitda_






How do systems handle expired certs?
Do time-related issues bork services?

53 @swagitda_






- Failure in production is inevitable, so
you must learn from it early and often

A 4

v .

55






///////{, ===
4/

Security chaos engineering builds
confidence in the safety of prod systems



“Our real discoveries come from chaos,

from going to the place that looks wrong
and stupid and foolish.”

- Chuck Palahniuk



Download for free:
nttps://www.verica.io/sce-
0D00k/

59

Security Chaos
Engineering

Aaron Rinehart & Kelly Shortridge

v W —— Y
sl P 7\
8 /4 P — > - s 2

)/ Pl =

REPORT



@swagitda_

/in/kellyshortridge

kelly@shortridge.io

60 @swagitda_



