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Hi, I’m Kelly



Production is where valued is realized,
so we should probably keep it safe



Failure in production feels frightening
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...but it doesn't ha}e% end in disaster



How can we harness failure as a learning
opportunity to make production safer?



I. Failure 1n Production

II. Security Chaos
Engineering 1n Production
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I. Failure 1n
Production



Defenders tend to think in components
while attackers think«in'systems



Component-level vs. system-level -
faults are different than failures

19 @swagitda_



Faults: “one component of the system
deviating from its spec”
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Failure: “the system as a whole stops
providing the required service to users”
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You will never be able to eliminate the
chance of faults in your systems



Prevention only goes so far; too many
variables are out of your control

14 @swagitda_



A perfectly patched container can still be
pwned if there’'s anon access in K8s
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Scan all the code for vulns... then
attackers compromise the code scanner
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Yubikeys for GitHub... then attackers
abuse Jenkin's anon script console
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‘Failure in productionmanif}\e:stsin a
mess of multiplicitous manners : =
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Private / public clouds, VPS, VMs,
containers, serverless, computerless...
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Production environments are complex
systems full of interrelated components
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Failure is like a tapestry of interwoven
strands that can spread fire to the rest
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There is a dizzying array of activity that
can jeopardize production operations



Two key types: deliberately malicious
(attackers) + accidentally careless (devs)
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Sometimes they overlap! Like attaching
a debugger to a prod system
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Attackers with privileged creds &
“insider threats” are basically the same
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Most prod infrastructure runs on Linux,
where everything is a file
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~This means failure in prod often bubbles
B r g



Example 1: Log files are deleted or
tampered - your ops is likely screwed
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Example 2: Changes to boot files, root
cert stores, or SSH keys - stability snafus
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Example 3: Resource limits are disabled
- highly sus and doubtless disastrous
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Confronted with such complexity, how
can we constructively cope?
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II. Security Chaos
Engineering 1n Prod



Our goal is to prevent faults from
causing failures as much as we can
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Purposefully triggering faults lets you
realize and test your success towards it



Security Chaos Engineering: Let's
harness failure to build knowledge
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Conducting experiments generates
evidence & builds muscle memory
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Make incident response boring because
it feels routine after repeated practice
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Learning how your systems respond to
failure requires testing in prod itself
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...but you can start in staging to build
confidence before migrating to prod
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What SCE experiments should you try?



Example prioritization matrix of attack goals

Application source
code
Process docs

Nice to have

_ Internal business
intelligence telemetry

Stolen content

Money

Production revenue-
generating service
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Research/patents
Lists of employees
Deprioritize
Expense systems

Secret “menus”/
customer content

»

Attacker value
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Figure 2-5. Example prioritization matrix of assets relative to attacker

value and organizational value.
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Let's explore some examples...

@swagitda_



Example 1: Create & execute a new file
in a container

y



How does your container respond to
new file exec? Does it affect the cluster?
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. Example 2: Inject program crashes
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Does your node restart itself? How
qguickly can you redeploy post-crash?
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Example 3: Disable resource limits (CPU,
file descriptors, memory, restarts, etc.)



Can an infinite script take up resources?
Do slower response times propagate?

ug @swagitda_



Example 4: Disable access to DNS



How reliant are your systems on
external DNS? Do you have a fallback?
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How do systems handle expired certs?
Do time-related issues bork services?
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- Failure in production is inevitable, so
you must learn from it early and often
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Security chaos engineering builds
confidence in the safety of prod systems



“Our real discoveries come from chaos,

from going to the place that looks wrong
and stupid and foolish.”

- Chuck Palahniuk



Download for free:
nttps://www.verica.io/sce-
0D00k/
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Security Chaos
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/in/kellyshortridge

kelly@shortridge.io
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