
FROM CATASTROPHE TO

CHAOS IN PRODUCTION

Kelly Shortridge (@swagitda_) GOTOpia Chaos Engineering Day 2021

@swagitda_

Hi, I’m Kelly

@swagitda_

Production is where valued is realized,
so we should probably keep it safe

3

@swagitda_

Failure in production feels frightening

4

@swagitda_

…but it doesn’t have to end in disaster

5

@swagitda_

How can we harness failure as a learning
opportunity to make production safer?

6

@swagitda_

I. Failure in Production

II. Security Chaos

Engineering in Production

7

I. Failure in

Production

@swagitda_

Defenders tend to think in components
while attackers think in systems

9

@swagitda_

Component-level vs. system-level –
faults are different than failures

10

@swagitda_

Faults: “one component of the system
deviating from its spec”

11

@swagitda_

Failure: “the system as a whole stops
providing the required service to users”

12

@swagitda_

You will never be able to eliminate the
chance of faults in your systems

@swagitda_

Prevention only goes so far; too many
variables are out of your control

14

@swagitda_

A perfectly patched container can still be
pwned if there’s anon access in K8s

15

@swagitda_

Scan all the code for vulns… then
attackers compromise the code scanner

16

@swagitda_

Yubikeys for GitHub… then attackers
abuse Jenkin’s anon script console

17

@swagitda_

Failure in production manifests in a
mess of multiplicitous manners

18

@swagitda_

Private / public clouds, VPS, VMs,
containers, serverless, computerless…

19

@swagitda_

Production environments are complex
systems full of interrelated components

20

@swagitda_

Failure is like a tapestry of interwoven
strands that can spread fire to the rest

21

@swagitda_

There is a dizzying array of activity that
can jeopardize production operations

22

@swagitda_

Two key types: deliberately malicious
(attackers) + accidentally careless (devs)

23

@swagitda_

Sometimes they overlap! Like attaching
a debugger to a prod system

24

@swagitda_

Attackers with privileged creds &
“insider threats” are basically the same

25

@swagitda_

Most prod infrastructure runs on Linux,
where everything is a file

26

@swagitda_

This means failure in prod often bubbles
up from unwanted file-related activity

27

@swagitda_

Example 1: Log files are deleted or
tampered – your ops is likely screwed

28

@swagitda_

Example 2: Changes to boot files, root
cert stores, or SSH keys – stability snafus

29

@swagitda_

Example 3: Resource limits are disabled
– highly sus and doubtless disastrous

30

@swagitda_

Confronted with such complexity, how
can we constructively cope?

31

II. Security Chaos

Engineering in Prod

@swagitda_

Our goal is to prevent faults from
causing failures as much as we can

33

@swagitda_

Purposefully triggering faults lets you
realize and test your success towards it

34

@swagitda_

Security Chaos Engineering: Let’s
harness failure to build knowledge

35

@swagitda_

Conducting experiments generates
evidence & builds muscle memory

36

@swagitda_

Make incident response boring because
it feels routine after repeated practice

37

@swagitda_

SCE untangles relations between prod
components to curtail contagion

38

@swagitda_

Learning how your systems respond to
failure requires testing in prod itself

39

@swagitda_

…but you can start in staging to build
confidence before migrating to prod

40

@swagitda_

What SCE experiments should you try?

41

@swagitda_

@swagitda_

Let’s explore some examples…

@swagitda_

Example 1: Create & execute a new file
in a container

44

@swagitda_

How does your container respond to
new file exec? Does it affect the cluster?

45

@swagitda_

Example 2: Inject program crashes

46

@swagitda_

Does your node restart itself? How
quickly can you redeploy post-crash?

47

@swagitda_

Example 3: Disable resource limits (CPU,
file descriptors, memory, restarts, etc.)

48

@swagitda_

Can an infinite script take up resources?
Do slower response times propagate?

49

@swagitda_

Example 4: Disable access to DNS

50

@swagitda_

How reliant are your systems on
external DNS? Do you have a fallback?

51

@swagitda_

Example 5: Time travel on a host

52

@swagitda_

How do systems handle expired certs?
Do time-related issues bork services?

53

In Conclusion

@swagitda_

Failure in production is inevitable, so
you must learn from it early and often

55

@swagitda_

Conducting experiments uncovers new
knowledge & builds muscle memory

56

@swagitda_

Security chaos engineering builds
confidence in the safety of prod systems

57

@swagitda_

“Our real discoveries come from chaos,

from going to the place that looks wrong

and stupid and foolish.”

– Chuck Palahniuk

58

@swagitda_

Download for free:
https://www.verica.io/sce-
book/

59

@swagitda_

@swagitda_

/in/kellyshortridge

kelly@shortridge.io

60

