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Hi, I’m Kelly
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Production is where valued is realized, 
so we should probably keep it safe
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Failure in production feels frightening
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…but it doesn’t have to end in disaster
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How can we harness failure as a learning 
opportunity to make production safer?
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I. Failure in Production

II. Security Chaos 

Engineering in Production
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I. Failure in 

Production
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Defenders tend to think in components 
while attackers think in systems
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Component-level vs. system-level –
faults are different than failures
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Faults: “one component of the system 
deviating from its spec”
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Failure: “the system as a whole stops 
providing the required service to users” 
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You will never be able to eliminate the 
chance of faults in your systems
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Prevention only goes so far; too many 
variables are out of your control
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A perfectly patched container can still be 
pwned if there’s anon access in K8s
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Scan all the code for vulns… then 
attackers compromise the code scanner
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Yubikeys for GitHub… then attackers 
abuse Jenkin’s anon script console
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Failure in production manifests in a 
mess of multiplicitous manners
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Private / public clouds, VPS, VMs, 
containers, serverless, computerless…
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Production environments are complex 
systems full of interrelated components
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Failure is like a tapestry of interwoven 
strands that can spread fire to the rest
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There is a dizzying array of activity that 
can jeopardize production operations
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Two key types: deliberately malicious 
(attackers) + accidentally careless (devs)
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Sometimes they overlap! Like attaching 
a debugger to a prod system
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Attackers with privileged creds & 
“insider threats” are basically the same
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Most prod infrastructure runs on Linux, 
where everything is a file

26



@swagitda_

This means failure in prod often bubbles 
up from unwanted file-related activity
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Example 1: Log files are deleted or 
tampered – your ops is likely screwed
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Example 2: Changes to boot files, root 
cert stores, or SSH keys – stability snafus
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Example 3: Resource limits are disabled 
– highly sus and doubtless disastrous
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Confronted with such complexity, how 
can we constructively cope?
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II. Security Chaos 

Engineering in Prod
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Our goal is to prevent faults from 
causing failures as much as we can
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Purposefully triggering faults lets you 
realize and test your success towards it
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Security Chaos Engineering: Let’s 
harness failure to build knowledge
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Conducting experiments generates 
evidence & builds muscle memory
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Make incident response boring because 
it feels routine after repeated practice
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SCE untangles relations between prod 
components to curtail contagion
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Learning how your systems respond to 
failure requires testing in prod itself
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…but you can start in staging to build 
confidence before migrating to prod
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What SCE experiments should you try?
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Let’s explore some examples…
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Example 1: Create & execute a new file 
in a container
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How does your container respond to 
new file exec? Does it affect the cluster?
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Example 2: Inject program crashes
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Does your node restart itself? How 
quickly can you redeploy post-crash?
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Example 3: Disable resource limits (CPU, 
file descriptors, memory, restarts, etc.)
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Can an infinite script take up resources? 
Do slower response times propagate? 
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Example 4: Disable access to DNS

50



@swagitda_

How reliant are your systems on 
external DNS? Do you have a fallback?
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Example 5: Time travel on a host
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How do systems handle expired certs? 
Do time-related issues bork services? 
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In Conclusion
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Failure in production is inevitable, so 
you must learn from it early and often
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Conducting experiments uncovers new 
knowledge & builds muscle memory
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Security chaos engineering builds 
confidence in the safety of prod systems

57



@swagitda_

“Our real discoveries come from chaos, 

from going to the place that looks wrong 

and stupid and foolish.” 

– Chuck Palahniuk
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Download for free:  
https://www.verica.io/sce-
book/
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