

November 2, 2023

Kemba E. Walden, Acting Director
Office of the National Cyber Director
The White House
1600 Pennsylvania Ave NW
Washington, DC 20500

RE: Doc. No. ONCD-2023-0002; Request for Information on Open-Source Software Security: Areas
of Long-Term Focus and Prioritization

Dear Acting Director Walden,

As leaders in cybersecurity and software engineering, we appreciate the opportunity
to submit this statement in response to the requests for comment by the Office of the
National Cyber Director (ONCD), the Cybersecurity Infrastructure Security Agency (CISA),
the National Science Foundation (NSF), the Defense Advanced Research Projects Agency
(DARPA), and the Office of Management and Budget (OMB) – the “requesting agencies” –
concerning the long-term focus and prioritization on open-source software security.

As organizations increasingly adopt software to fulfill their missions, the impact of
software failures on their operations increases. If those failures correlate or cascade across
organizations and industries, it could unleash systemic harm on our nation. Sustaining
resilience in our software systems is no longer aspirational, but imperative if we wish to
weather such storms.

What we need is for our systems to adapt to the unexpected and unintended. We
envision a future in which continual adaptation to adversity is a natural part of how we
maintain systems. All systems are in transition; they are dynamic, ever-changing. Now is a
poignant moment to incentivize resilience as part of their ever-changing nature.

Yet, we may just as easily poison resilience through misguided regulation and
recommendations. Resilience is not about preventing failure. To sustain resilience is to
minimize the impact of failure and ensure we can change systems – their behaviors,
designs, practices, and so on – to keep up with the challenges presented by their external
reality.

The reality of complex systems is that it is impossible to prevent failure. We cannot
prevent software vulnerabilities, nor disk failure, nor network outages from ever occurring.
Preventing humans from making mistakes is an even more quixotic ambition. But we can,
as an ecosystem, minimize harm when those failures occur. We can ensure that a problem
in one part of the ecosystem does not cascade to the rest. We can prepare for the
inevitable so that when something goes wrong, we can recover from it swiftly and safely.

Resilience also means adapting to harness opportunities, not solely survive failures.
Open-source software (OSS) is a growth engine for the United States; the creativity bursting
from its ecosystem nurtures national innovation. The requesting agencies cannot stall this
engine through corrosive regulatory interference lest they catalyze more harm than good.

It is not just economic growth, but our geopolitical position that is at stake. The
United States is competitive internationally in part due to its technological ingenuity and
execution. Existing regulatory requirements already stifle innovation and hinder software
velocity in the name of nebulous benefits. Knee-jerk regulatory responses that inevitably
ossify may satisfy action bias, but not our noble goal of a resilient software ecosystem.

The software industry added $1.9 trillion to U.S. GDP in 2020, $933 billion of which
was directly1. While estimating the cost of cyber incidents is fraught2, the FBI Internet Crime
Complaint center estimated $4.1 billion in cybercrime losses in 2020 – many of which are
due to phishing and other scams rather than software exploitation. The Verizon Data
Breach Investigations Report (DBIR) found that vulnerability exploitation is present in only
5% of breaches (stolen credentials and phishing are the overwhelming attacker modalities
in non-error, non-misuse breaches)3. NotPetya, arguably the worst cyberattack (due to
vulnerability exploitation) in terms of systemic impact, resulted in $10 billion in total
damages across the world4. There would need to be two NotPetya-level incidents per year
within the United States for losses to reach even 1% of the economic benefits stimulated by
software.

The worst outcome we perceive from this request for information (RFI) is regulatory
intervention that barely makes a dent in already-low losses while generating yet more
compliance checklists and “busywork” for organizations. We do not want the requesting
agencies’ efforts, no matter how well intentioned, to become ripe for regulatory capture.

This motivates us to clarify the core goal outcome of this project to help the
requesting agencies navigate away from such troublesome waters. Based on the “critical
questions” posed and the rest of the RFI’s text, we believe we can synthesize and clarify the
core goal outcome into the following statement: we do not want unintended behavior in
code to generate systemic damages. We believe that the requesting agencies – and likely
all stakeholders in the software ecosystem – specifically want software providers to contain
the impact of failures in their code.

We do not want failure in the software world to cause tangible socioeconomic
impact on the national scale. Of course, organizations are motivated to minimize the
impact of failure for their localized, individual concerns. But we believe the implicit concern
from the requesting agencies is that failure in some software entity – whether an

1 https://software.org/reports/software-supporting-us-through-covid-2021/
2 https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf
3 https://www.verizon.com/business/en-gb/resources/2023-data-breach-investigations-report-dbir.pdf
4 https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

https://software.org/reports/software-supporting-us-through-covid-2021/
https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf
https://www.verizon.com/business/en-gb/resources/2023-data-breach-investigations-report-dbir.pdf
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

application, library, framework, language, or tool – will “escape” the digital sphere and
cascade into economic or social failures.

Our recommendations throughout the document focus on this core outcome. We
believe this is useful to optimize and guide what changes we want to incentivize – to avoid
boiling the proverbial ocean – as well as to uncover where we need caution, even if those
solutions feel more convenient or obvious.

Our response begins by describing multiple Gordian Knots we believe will offer the
requesting agencies alternative perspectives on the problem at hand. The rest of the
response is structured with recommendations in the areas and subareas where our
expertise is relevant, in the same order as presented in the RFI. Additionally, we identify
and recommend multiple new subareas of focus for prioritization, including isolation,
modular design, automation (CI/CD), resilience stress testing, and others; many of these
are suffused with the spirit of Gordian Knots.

We are aware this is a lengthier response than is typical, but we sought to be
exhaustive in offering our expertise across problems and areas of focus. This moment in
spacetime is a critical juncture in software – not just OSS – and we feel privileged to submit
our recommendations for the requesting agencies to consider as they traverse these
challenges.

The views expressed herein are not necessarily the views of our employers or any of their
affiliates. The information contained herein is not intended to provide, and should not be relied
upon for, investment advice.

1. Gordian Knots

1.1 Is OSS critical infrastructure?

There is an implicit decision slinking in this discourse, one with both philosophical
and practical implications: should open-source software be considered critical
infrastructure?

If we treat OSS like critical infrastructure, then we need the related trappings of it –
similar to what we require of physical critical infrastructure, like bridges, or financial critical
infrastructure, like the stock market. It is not an understatement that this would upheave
the software sector in the United States; we believe the requesting agencies must treat it as
the grave proposition it represents and not wave such speculation around casually.

If we care about systemic impacts – about software wreaking widespread socio-
economic harm – then we must equally consider the socioeconomic harm that deeming
OSS critical infrastructure would inflict. There is a tradeoff between international
competitiveness in technology innovation and regulating OSS. There also exists a tradeoff

between national economic growth – growth that spans industries – and regulating OSS as
critical infrastructure.

Through the lens of socioeconomic concerns, the benefits of OSS dominate its
downsides at present; the OSS ecosystem is, overall, working well for us as a nation. Is it
worth sacrificing these socioeconomic benefits because, on occasion, there are negative
impacts?5

We believe a concrete and recent example can illustrate what we mean when we
assert that the OSS ecosystem is working well overall. In a recent post about an attack
campaign leveraging malicious Python packages, researchers found that the attackers
created 272 malicious packages available for download6. This reflects approximately 0.06%
of the roughly 469,000 total packages in the Python package ecosystem (known as “PyPI”
for the Python Package Index).

When we instead look at downloads of these malicious packages, which totaled
75,000 over six months7 (or around 417 times per day), the impact is even smaller. The top
20 libraries in PyPI are downloaded approximately 200 million times per day8. This means
the malicious PyPI package downloads are 0.0002% of downloads across the top 20
packages. Even if we assume there are concurrent attack campaigns of this nature, it
means downloading Python packages is as safe or safer than riding trains9 and a developer
is at least 4,527x less likely to download a malicious Python package than to die in a car
crash10. This is especially impressive given both the rail and automobile industries face
significant safety regulation to achieve these statistics, while the Python ecosystem's efforts
are entirely organic.

We believe this demonstrates how well the OSS ecosystem is working in terms of
safety, despite what cybersecurity vendors and attention-grabbing headlines would like us
all to believe. As we discuss in Section 2.3, open-source package ecosystems are positive
examples of governance. We encourage the requesting agencies to better understand how
those ecosystems work and to rely on evidence rather than succumb to sensationalism.

In sum, we do not believe OSS should be regulated as critical infrastructure –
especially if we do not wish to sacrifice the benefits the OSS ecosystem gifts us. Yet, there
are still opportunities for improvement to reduce socioeconomic impact when something
goes wrong in software. To balance these concerns, we again return to the restated goal

5 This sets aside the net benefits to the global community, which we will treat as a separate concern given the
requesting agencies are all located within the United States.
6 https://gist.github.com/masteryoda101/65b55a117fe2ea33735f05024abc92c2
7 https://checkmarx.com/blog/the-evolutionary-tale-of-a-persistent-python-threat/
8 https://pypistats.org/top
9 https://www.thedailybeast.com/will-i-die-on-a-train
10 It is safe to assume that the total number of daily downloads across PyPi greatly exceeds that of the top 20
packages.

https://gist.github.com/masteryoda101/65b55a117fe2ea33735f05024abc92c2
https://checkmarx.com/blog/the-evolutionary-tale-of-a-persistent-python-threat/
https://pypistats.org/top
https://www.thedailybeast.com/will-i-die-on-a-train

above that we seek containment of impact from software failures – and not just in OSS, but
software of all kinds, as we will turn to next.

1.2 Expanding the scope beyond OSS

One of the cybersecurity industry’s latest obsessions is around the “software supply
chain,” and we can understand why: open source's viral adoption capability means it now
underpins nearly all software products and infrastructure on the market, and the ease at
which one can examine open-source software suggests to many that it is straightforward to
discover and exploit vulnerabilities.

OSS also exhibits a much wider variety of development practices than a single
software vendor would. This dynamic results in simplistic, surface-level arguments that
open-source software delivery pipelines are insecure and require more oversight.

That may be true, but, if so, it is equally true for proprietary software delivery
pipelines. Many companies have poor practices around code review, access auditing,
version control, and build reproducibility – not to mention vulnerabilities in the source code
itself. Proprietary software (sometimes called “closed source”) is not exempt from abysmal,
insecure development practices just because of its licensing. From the perspective of
systemic impact, proprietary software is often implicated in the most damaging attack
campaigns, including the NotPetya and SolarWinds incidents.

Some of the best managed software projects are open source, where multiple
organizations contribute according to norms that the community informally or formally
agrees upon. It is perhaps not a coincidence that we struggled to find reference examples
of exploits in OSS vulnerabilities that generated significant systemic damages.

The RFI references the Log4j vulnerability, which discharged far less damage than
feared. The 2023 Verizon DBIR revealed that Log4Shell was only present in 0.4% of
incidents in their data set11, and security vendors witnessed Log4Shell attacks wane
considerably as 2022 progressed12. Heartbleed, an OpenSSL vulnerability disclosed in 2014,
was touted as “the worst vulnerability found”13; but outside of a few cases of personal
identifiable information (PII) theft, the impact was low (so low, in fact, no one seems to
have bothered quantifying it).

Accordingly, we recommend the requesting agencies expand their scope to cover all
software, not just open-source software, for a few reasons:

1) Proprietary solutions are not inherently more secure. If we assess how attackers
gain access to organizations by exploiting software, it is predominately through
commercial “bolt-on” solutions, like in the SolarWinds incident or, in the case of

11 https://www.verizon.com/business/en-gb/resources/2023-data-breach-investigations-report-dbir.pdf
12 https://news.sophos.com/en-us/2022/01/24/log4shell-no-mass-abuse-but-no-respite-what-happened/
13 https://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-vulnerability-you-are-at-
risk-what-you-need-to-do/

https://www.verizon.com/business/en-gb/resources/2023-data-breach-investigations-report-dbir.pdf
https://news.sophos.com/en-us/2022/01/24/log4shell-no-mass-abuse-but-no-respite-what-happened/
https://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-vulnerability-you-are-at-risk-what-you-need-to-do/
https://www.forbes.com/sites/josephsteinberg/2014/04/10/massive-internet-security-vulnerability-you-are-at-risk-what-you-need-to-do/

ransomware campaigns, vulnerabilities in virtual private networks (VPNs)14.
Network appliances are especially notorious for their subpar practices15, both for
code development as well as configuring the environment where the code
runs1617. These proprietary appliances typically lack software security “basics” like
ASLR, stack canaries, and allocator hardening.1819 While nation state actors may
be able to bypass these “basics,” most attackers lack the resources and sufficient
return on investment (ROI) to defeat such mechanisms; ensuring those basics
are in place raises the cost of attack across all attacker types.

2) Applying onerous requirements only on OSS will engender perverse incentives.
Such requirements would serve as an intangible subsidy to proprietary vendors
(who again, we must stress, do not inherently produce safer or higher quality
code). The effect would likely be less use of OSS in systems delivered to the
federal government. Another potential outcome is that vendors would produce
proprietary, unmaintained variants of OSS projects for use in their products to
evade OSS requirements – and we believe this outcome does not beget safety.

3) The federal government already has more visibility into open-source software as
compared with proprietary software. Why is more insight into OSS the primary
point of concern when government agencies already have much more visibility
into OSS as compared to proprietary software? In Section 2.3.2 we offer
recommendations to ameliorate this problem.

4) Potential systemic impact depends on a software system’s ubiquity of adoption,
criticality, and degree of access in customer systems; its licensing model is one of
the least important factors determining impact. Big shocks come from widely
deployed, vulnerable components that are trivially accessible from the internet
or via connectivity to a vendor's centralized control plane. Thus, we believe the
requesting agencies should focus on the general problem of software
components with deep access in customers’ systems – regardless of licensing –
especially those with widespread adoption that are "too big to fail.”

The SolarWinds incident was an example of this final point; it is not open source, but
the damage resulting from a malicious software update in 2021 spanned industries – and,
of course, compromised federal agencies, too. It is worth noting that a core value
proposition driving SolarWinds’ adoption is compliance requirements. We believe, from a
correlated risk perspective, that incumbent software solutions that address federal
compliance requirements (including PCI, HIPAA, FedRAMP, and others) are especially

14 https://attack.mitre.org/techniques/T1133/
15 https://www.cisa.gov/news-events/alerts/2016/09/06/increasing-threat-network-infrastructure-devices-and-
recommended
16 https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012045/pdf
17 https://www.darkreading.com/perimeter/attackers-heavily-targeting-vpn-vulnerabilities-/d/d-id/1340770
18 https://browse.arxiv.org/pdf/2007.02307.pdf
19 https://www.usenix.org/system/files/login/articles/login_summer17_14_wetzels.pdf

https://attack.mitre.org/techniques/T1133/
https://www.cisa.gov/news-events/alerts/2016/09/06/increasing-threat-network-infrastructure-devices-and-recommended
https://www.cisa.gov/news-events/alerts/2016/09/06/increasing-threat-network-infrastructure-devices-and-recommended
https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012045/pdf
https://www.darkreading.com/perimeter/attackers-heavily-targeting-vpn-vulnerabilities-/d/d-id/1340770
https://browse.arxiv.org/pdf/2007.02307.pdf
https://www.usenix.org/system/files/login/articles/login_summer17_14_wetzels.pdf

valuable targets for attackers. If a vendor is “sticky” in a customers’ technology stack
because they “must” buy it to meet non-negotiable regulatory requirements, then there is
less incentive for the vendor to innovate or prioritize security.

Worse, many of these proprietary solutions require significant levels of access to
and control over customer systems to fulfill compliance requirements. For example, if a
“zero trust” solution offers a central control plane to manage access policies across a
customer’s systems, then it becomes a valuable target for attackers, who can exploit it to
manage access as they please. Even more dangerous are solutions that can push code to
other machines, like some endpoint detection and response (EDR) tools which run with
privileged access on production systems. A heuristic to determine potential systemic
impact might be to look for commercial software solutions that have high privilege,
widespread deployment or access, low oversight, and few vendors (i.e., a few incumbents
have most of the market share).

1.3 Systems thinking

We also must caution the requesting agencies about a narrow focus on code rather
than on systems. The philosophy underlying the RFI appears to be that if we secure
individual software components, the overall system will be secure. This can be
characterized as a bottoms-up approach. Unfortunately, it defies the nature of complex
systems – and software is inevitably complex (involving many interacting, interconnected
components).

Vulnerable code itself is harmless until it runs on infrastructure when it interacts
with users, whether humans or machines. Individual code components may be secure in
themselves but not when interacting with other parts of the software – not unlike how a
coffee maker may be “safe” in isolation but lead to catastrophic failure when placed near
electrical equipment on an airplane20.

This interactivity can even be helpful for security. Why was Log4Shell’s impact so
negligible, despite what many experts forecasted? Possibly it is due to swift collaboration
across the industry to protect against the attack and patch systems as quickly as possible.
But a key contributing factor is that attackers must exploit Log4Shell based on the
application’s context21; if attackers must configure or customize the attack for it to work on
a target system, then mass exploitation is infeasible.

This reveals an important insight: OSS, like most software, is rarely a standalone
component. Organizations integrate OSS with other software components as part of their
applications, services, and systems – and those systems are usually highly customized and
configured for the organization’s context. Few implementations are exactly the same

20 https://www.jasoncollins.blog/posts/perrows-normal-accidents-living-with-high-risk-technologies
21 https://news.sophos.com/en-us/2022/01/24/log4shell-no-mass-abuse-but-no-respite-what-happened/

https://www.jasoncollins.blog/posts/perrows-normal-accidents-living-with-high-risk-technologies
https://news.sophos.com/en-us/2022/01/24/log4shell-no-mass-abuse-but-no-respite-what-happened/

across organizations; where they are the same, their exposure is typically limited (e.g., few
organizations stick MySQL on the public internet, and it generally requires authentication).

We believe mass exploitation is the most likely driver behind potential systemic
catastrophe due to OSS, but we also suspect mass exploitation of any one OSS component
is challenging. In contemplating other correlated, tail-end impact attacks, we believe
NotPetya to be the exemplar. NotPetya leveraged the leaked EternalBlue exploit, which
exploited a vulnerability in Microsoft’s implementation of the Server Message Block (SMB)
protocol in the Windows operating system22 – an implementation which was relatively
homogenous across Windows systems.

If correlated socioeconomic impact is the requesting agencies’ concern, the focus
should not be on critical software components but on critical software systems – how we can
ensure that unintended interactivity between elements in a system does not instigate
harm. We encourage the requesting agencies to adopt a systems perspective when
prioritizing their efforts, rather than a component-focused, bottoms-up approach.

2. Secure Open-Source Software Foundations

Our recommendations throughout this section are grounded in what we believe
would help reduce correlated socioeconomic impact from attacks in the future, whether in
OSS or commercial software (per the Gordian Knot in Section 1.2). The section itself is
structured to follow the sub-areas listed in the RFI under the primary area of “Secure Open-
Source Software Foundations” and then proposes new sub-areas of focus.

2.1. Fostering the adoption of memory safe programming languages

The RFI suggests a core aim is to “reduce the proliferation of memory unsafe
programming languages,” which we interpret to mean slowing the growth of unsafe
codebases (i.e., developers writing more memory unsafe code). Instead, we believe the goal
should be to reduce the impact of memory unsafe code, which involves reducing the
growth of new unsafe code, slowing the furthered use of existing unsafe code, refactoring
existing unsafe code, and minimizing the impact of all unsafe code (whether new or old).
Our recommendations throughout this section reflect these four endeavors.

We agree that, when possible, software providers should refactor their C or C++
code into memory safe languages. To “refactor” a system is to change its underlying
materials, methods, structure, or organization while maintaining the functionality it
provides. There are different degrees of refactoring: changes can be localized or
widespread; they can wholly replace a specific component or apply a common change to
numerous components; refactors can "land" all at once, or in stages. All approaches are
suitable for combatting the hydra of memory unsafety.

The adoption of memory safe programming languages is occurring organically in the
private sector – and largely not for security reasons. Engineering teams are selecting

22 https://www.cisa.gov/news-events/alerts/2017/07/01/petya-ransomware

https://www.cisa.gov/news-events/alerts/2017/07/01/petya-ransomware

memory safe languages because they support reliability and developer productivity better
than unsafe languages. Few developers enjoy chasing stability problems provoked by the
hazards of unsafe languages, as that interrupts their coveted “flow.”23

Nevertheless, we believe the federal government can accelerate this adoption. In
particular, we believe the requesting agencies can and should incentivize the adoption of
memory safe languages among its contractor and vendor base.

One potential incentive mechanism is setting a timeline for federal contractors to
only build memory safe systems; that is, by a certain date, contractors must write and
implement any new software in memory safe languages if they are receiving financial
assistance from the federal government. This also implies that contractors must select
memory safe OSS components for the software they deliver to federal agencies, which may
indirectly influence the open-source market. As a steppingstone incentive towards this
paradigm, federal agencies could prefer contracts from vendors who only build memory
safe systems.

Grants are another financial incentive we believe the requesting agencies should
consider. The requesting agencies could require grant recipients – including non-profit
entities like national labs and universities – to implement software in memory safe
languages. Similarly, the requesting agencies could provide grants or other financial
benefits to universities who incorporate memory-safe languages into their engineering and
computer science curriculum. Many students today are future open-source maintainers, so
we should make it easy for them to learn memory safe languages.

These incentives must extend to the lowest levels of software, too, where memory
safety is less common, such as BIOS and firmware (including hardware roots of trust). The
requesting agencies should prioritize components that allow extensive control or access in
the system and / or must process data from a variety of sources, some of which may be
exogenous and therefore not trusted.

This incentive scheme could take the form of a nearer-term deadline to deliver such
foundational components in memory-safe languages, or immediately paying a premium
during procurement for hardware and software written in memory-safe languages. In the
spirit of Gordian Knots, we suggest that advanced techniques for applying memory safety
to otherwise memory-unsafe languages, such as Checked C24, CHERI25 and Apple's memory-
safe iBoot26, should also be eligible.

With all this said, we recognize that not every organization can immediately begin
refactoring their code into memory safe languages. A requirement such as “rewrite
everything in Rust” is infeasible – especially if the requesting agencies’ scope is beyond their

23 https://queue.acm.org/detail.cfm?id=3454124
24 https://www.microsoft.com/en-us/research/publication/checkedc-making-c-safe-by-extension/
25 https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
26 https://support.apple.com/guide/security/memory-safe-iboot-implementation-sec30d8d9ec1/web

https://queue.acm.org/detail.cfm?id=3454124
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://support.apple.com/guide/security/memory-safe-iboot-implementation-sec30d8d9ec1/web

contractor base. In the private sector, for-profit organizations, by definition, will prioritize
projects that support revenue and profit goals; it is tricky to tie memory safety to those
goals except through the counterfactual of avoiding potential security and performance
incidents. As a result, new systems are often written in memory safe languages, but
existing systems continue using whatever language they were originally developed in, even
as they receive substantial expansions and deepen their criticality. Our recommendations
throughout the rest of Section 2.1 – and indeed all of Section 2 – reflect this reality of
needing variegated solutions that supplement refactoring.

The biggest challenges organizations face with refactoring their software into a
memory safe language are often not technical, but social. Production pressures make it
difficult to allocate finite resources to efforts that bear little direct business payoff. C or C++
may be the only language known by all members of a team (who were originally hired to
work on a C or C++ system). Technical decision makers may experience ownership and
other biases towards design and implementation choices they made years ago27. Parts of
the system may require direct interaction with hardware or hard real-time performance,
which may be incompatible with some memory safe languages. Support contracts may
require vendors to maintain legacy outdated versions and the vendor may be insufficiently
staffed to support developing two systems in parallel. Government agencies could lead by
reforming their support contracts to prefer continual updates to new versions rather than
backporting of security updates to old versions.

However, we do not believe in the commonly espoused notion that not all systems
can be memory safe. All systems can be primarily memory safe, but not all system
components necessarily must be. Again, we believe memory safety should be the default. It
is a lack of vision that has us still designing new critical systems without memory safety in
2023. Numerous memory safe languages offer escape hatches to directly address
hardware in cases that require it. In memory safe languages, the escape hatch isn’t open by
default. Not all memory safe languages are suitable for all systems, but we now have
memory safe languages for even the most stringent of system requirements, thanks to the
availability of a qualified version of Rust28. Again, it’s better, but it’s not a panacea, and we
need to be careful about the incentives – especially when recommendations calcify and
can’t keep up to date with innovation.

2.1.1 Design-based mitigations

Given it is infeasible to magically rewrite the entire C and C++ ecosystem into Rust,
we believe the government should consider additional design-based mitigations, including
isolation and modularity (which enables iterative migration of components from C/C++ into
memory safe versions); we discuss each in Section 2.4 and 2.5 respectively.

27 https://thedecisionlab.com/biases/endowment-effect
28 https://ferrous-systems.com/blog/qualifying-rust-without-forking/

https://thedecisionlab.com/biases/endowment-effect
https://ferrous-systems.com/blog/qualifying-rust-without-forking/

There are other steps organizations can take short-term with their unsafe code that
will still improve security outcomes, which we encourage the requesting agencies to
consider as they identify and prioritize focus areas.

To address interdependencies during refactoring, we believe the requesting
agencies should focus on integration testing and modularity. Integration testing is the
process of applying automated testing to a fully integrated system, verifying the system
behaves as expected from a set of well-defined inputs. Unlike physical systems, software
systems can be easily coordinated, tested, monitored, validated and reset to a default
state. Constructing and performing automated full system integration tests is critical to
building confidences in structural changes to a system29. As one example, Jepsen is a
system for testing distributed systems that instantiates the system anew each time,
generates transactions, injects faults, and searches for inconsistencies30. FoundationDB
similarly tests their database by simulating entire clusters of machines including their
networks in a single deterministic process31.

2.1.2 Unique considerations with unsafe code

When organizations write and maintain their software in C or C++, they face unique
concerns:

1. Organizations with C or C++ code should assume the presence of vulnerabilities by
default. It is impossible to build C or C++ software at scale without having some
memory corruption vulnerabilities, so maintainers must turn on hardening features,
use program analysis tools, and generally be cautious to compensate.

2. Hardening features present a poor developer experience (DX). Many are not
enabled by default on popular platforms. They are inconvenient to programmers,
who may be prone to turn them off, especially as some impose a performance
penalty and make debugging more cumbersome. Worse, common embedded, real-
time, and obscure proprietary operating systems have poor support for hardening
features compared to their mainstream peers. We should consider environments
without basic hardening features enabled unfit for use in critical infrastructure, but,
at present, there is no incentive for vendors to change this practice. Opaque vendor-
supplied appliances often present such environments.

3. Program analysis tools such as static analyzers and dynamic sanitizers/checkers are
separate steps that require dedicated effort to configure, operate, and respond to.
Most of their findings are benign or appear benign, but it can be difficult to tell
benign findings from critical vulnerabilities without an educated assessment32. Many

29 https://queue.acm.org/detail.cfm?id=2889274
30 https://github.com/jepsen-io/jepsen/blob/main/README.md
31 https://apple.github.io/foundationdb/testing.html
32 https://arxiv.org/pdf/1805.09040.pdf

https://queue.acm.org/detail.cfm?id=2889274
https://github.com/jepsen-io/jepsen/blob/main/README.md
https://apple.github.io/foundationdb/testing.html
https://arxiv.org/pdf/1805.09040.pdf

vulnerabilities are completely opaque to static analysis tools33. These assessments
distract from productive development activity.

In the spirit of federal agencies offering specific recommendations on hazardous
physical materials, like lead or asbestos, we offer specific recommendations for hazardous
software materials like C/C++ code. While we again stress that we must incentivize
organizations to refactor their code into memory safe languages, below are suggestions
organizations should consider as “the basics” to improve the quality and safety of their
C/C++ code, including:

● Turn on hardening-related compiler options such as stack protection, ASLR,
relocation read-only, and trivial variable initialization

● Disable executable stacks and heaps, as many platforms do by default
● Use parser-generators when parsing inputs
● Separate your software into separate services that operate with limited permissions

for the purpose they serve
● Consider which compiler warnings are right for your security requirements
● Write comprehensive automated tests and run them against the system compiled

with address sanitizer and undefined-behavior sanitizer enabled
● Set up fuzz testing for security sensitive components, such as those that process

untrusted data
● Disable variable-length arrays and alloca(), preferring dynamic allocation instead
● Opt into _FORTIFY_SOURCE and other platform- or library-specific hardening
● Use a security-hardened default allocator for malloc/free
● Carefully validate custom memory arena sizes and abort when limits are exceeded
● Consider enabling -fwrapv (or your compiler's equivalent) for consistent signed

arithmetic in less performance critical systems or modules
● Avoid pre-fork style architectures, which render ASLR ineffective

Some organizations will perceive this as an onerous list. But, if we continue with the
analogy of hazardous physical materials like lead to hazardous software materials like
C/C++ code, the point is clear: some materials are so dangerous that the guidelines for
dealing with it must be different – and more stringent – because the hazards they present
significantly exceed the baseline dangers presented by safer materials (like unleaded fuel
or memory safe languages).

Like lead, we envision a future where the hazardous material sees continued use by
industry, but in a reduced capacity and with appropriate caution. Most software contains
much more memory unsafe code than is necessary and, like efforts to reduce lead
exposure, reducing the amount of it will take concerted efforts over decades. It will require

33 https://mediatum.ub.tum.de/doc/1659728/1659728.pdf

https://mediatum.ub.tum.de/doc/1659728/1659728.pdf

standing up to an industry (software) that is poisoning both the community at large and its
own workers – and additionally to an industry (cybersecurity) that profits off the continued
existence of unsafe code.

2.1.3 Safer change practices

Memory safety is a pressing problem, as the NSA stressed last year34. However, to
be resilient to any type of failure – including attacks – is to adapt and evolve with speed and
grace. Whether to transmogrify their codebase into a memory safe language or to better
compete in their market, organizations must pursue safer change practices. Such practices,
as we describe below, explicitly embrace speed and encourage development velocity. We
caution regulators to avoid equating security with slowness or friction, as heavy change
processes are often what impede an organization’s ability to sustain cyber resilience35.

Specifically, we recommend an iterative change model rather than the traditional
“big bang” release model:

• Iterative change model: Software maintainers can pursue an iterative change
model: selecting one part of the program (a “component”) and changing its
underlying materials – language, libraries, frameworks, tools – to achieve the
desired goal characteristics (often reliability, quality, or safety). After this refactored
component is released, they could proceed to refactoring the next component,
refactoring and releasing over time until the entire program is changed. This is
typically considered “best practice” in software engineering and is referred to as the
“Strangler Fig” pattern (as it imitates the biological process of the Strangler Fig
tree)36.

• “Big bang” release model: There is also the “big bang” refactor, where the entire
program is changed as part of one release rather than iterative releases. This is
considered an anti-pattern in modern software engineering, as a large volume of
changes pursued at once is harder to test and debug, resulting in higher rates of
failure in production and slower times to restore service health when failure
occurs37.

We encourage the requesting agencies to incentivize an iterative change model,
encouraging organizations to prioritize refactoring system components that pose the
greatest impact if exploited.

For many organizations, the system components that pose the greatest impact are
those that sustain business operation: for a retail company, the ability for their customers
to purchase goods; for a mining company, their ability to operate their fleet; for a

34 https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-
protect-against-software-memory-safety-issues/
35 https://cloud.google.com/architecture/devops/devops-process-streamlining-change-approval
36 https://martinfowler.com/bliki/StranglerFigApplication.html
37 https://core.ac.uk/download/pdf/326836096.pdf

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/
https://cloud.google.com/architecture/devops/devops-process-streamlining-change-approval
https://martinfowler.com/bliki/StranglerFigApplication.html
https://core.ac.uk/download/pdf/326836096.pdf

manufacturing company, their ability to run machinery; for an energy company, their ability
to supply power to customers. There are complimentary services that, while still valued by
the organization, are not as critical for business operation and therefore are not as high
priority, including: analytics, business intelligence, reporting, customer relationship
management, marketing, A/B testing, and more.

From an outcomes perspective, we want organizations to improve the resilience of
their systems to cyberattacks, which means ensuring the system can still provide its critical
functions under adversity. Refactoring 90% of system code, but not the 10% that
constitutes this critical functionality – like the path processing business-critical transactions
– will be closer to “security theater” than cyber resilience.

2.1.4 Tooling

We do not believe the government can develop tools to “automate and accelerate
the refactoring” of software into memory safe languages38. Tooling is not the problem; our
tooling to decompose software and refactor is sufficient. The problem is incentives and
funding. We can rewrite our entire ecosystem into memory safe languages. We have the
tools to do it and enough people to do it, but the missing piece is paying them for those
efforts.

2.1.5 Presence of C in the Lowest Layers of the Software Stack

C and C++ is deeply embedded in the lowest layers of the modern software stack,
with operating system kernels, standard libraries, memory allocators, cryptographic
libraries, compressors, image decoders and more implemented in it. These components
process untrustworthy data on behalf of higher-level components written in safe
languages, and thus even predominantly memory safe systems can be subject to memory
safety vulnerabilities. As it is rare for software vendors to differentiate themselves in the
market through these layers, they get less maintenance than other layers. Federal agencies
could benefit the entire ecosystem by incentivizing active maintenance of these layers,
including funding of memory safe substitutable replacements or rewrites. Crucially, these
must be production-ready replacements and not languish as research projects.

2.2 Reducing entire classes of vulnerabilities at scale

We believe this focus area deserves reframing. Instead of “reducing entire classes of
vulnerabilities at scale,” we believe it is more helpful to pursue a goal of “reducing impact at
scale”. We believe the requesting agencies should be open to reframing their areas of
concern, including this one, so as to not limit the opportunities at their disposal – and to
ensure any resulting recommendations are outcomes-driven.

38 We especially caution the requesting agencies from believing AI tools can help, such as with automated
translation; the quality of automated translation is universally abysmal, and we strongly believe AI would reduce
the quality. Neither regular nor AI-flavored automated translation is a worthwhile endeavor.

Related to reducing impact scale, we can reframe reducing entire classes of
vulnerabilities to a subgoal of “reducing entire classes of attacker action.” Ultimately, a
vulnerability does not matter much unless it is exploited and leads to tangible impact. For
example, isolation (discussed in Section 2.4) makes remote code execution (RCE) – the
ability for an attacker to run whatever code they want without having physical access to the
machine – less meaningful for an attacker. The attacker can gain RCE in an isolated
component, but they cannot expand their access to other components or resources
without additional difficulty. Unless that component offers the precise access the attacker
needs to achieve their goals – such as a filesystem containing sensitive intellectual property
– it will not provide value.

Capabilities-based security models are similar in this regard. If a runtime only allows
specific operations by a workload on specific resources, then it will cut off options for
attackers, who thrive off the flexibility to run whatever code they want and access whatever
resources they want.

2.2.1 Design Patterns

Software systems often follow common archetypes, like "RESTful API with data
stored in a relational database management system (RDBMS)" or "web frontend with user-
specific data stored in database.” Instead of letting vendors struggle to create secure
designs themselves, the federal government could provide a set of base requirements,
design recommendations, and reference architectures for each archetype. We would
suggest that an open RFI process would be appropriate here, with the government
describing archetypes of interest and participants submitting secure reference designs.

Examples of base requirements could include requiring single sign on (SSO) or two-
factor authentication (2FA); use of certified middleware for authenticating users; and
requiring TLS for communicating with databases. As new software practices and attack
strategies emerge, the federal government should update the guidelines to meet evolving
conditions. Credit card issuers apply a similar strategy to great effect with the PCI-DSS suite
of standards39: to interoperate with their transaction network, a party must follow their
requirements and, in some cases, certify. Federal agencies should not accept shoddy
workmanship by their vendors, and it is reasonable to set clear standards and guidelines.

2.3 Strengthening the software supply chain

We suspect that the requesting agencies are unaware that many of the concerns
listed in this sub-area are addressed by common development practices in the private
sector. Developers weave their workflow through code and design review, automated
testing, build systems and CI/CD (discussed in Section 2.6.1) to achieve confidence in the
code they ship, whether it's written by themselves, a peer, or someone they've never met.
Key to these development practices are the role of package managers and the open
package ecosystem. Package ecosystems are built on trust, and this is largely sufficient for

39 https://www.pcisecuritystandards.org/standards/

https://www.pcisecuritystandards.org/standards/

the open source and private sector development community to date. There are occasional
incidents, which end up in the headlines and drive fear, but the evidence suggests the
resulting impact is low. Even if the impact is 10x of public visibility, it is still minimal.

As one example of how these concerns are addressed by package managers,
consider the bullet in the RFI on “incorporating automated tracking and updates of
complex code dependencies.” This is a mostly solved problem in the private sector by
package managers coordinating a software package's complete dependency graph via lock
files40. Package managers resolve the dependencies a developer has declared the software
requires into a full dependency graph representing specific versions of the software's direct
and transitive dependencies. This information including exact signatures of each
dependency is recorded into a lock file, where it can be used later to produce an exact
replica of the build or analyze the set of dependencies in use. Lock files are named so
because they "lock in" the version selections the package manager resolved. They first
gained traction in the Ruby ecosystem as a mechanism to ensure reproducible builds in the
presence of a dynamically evolving package ecosystem, and all major language package
managers have since adopted this approach.

One major exception, of course, is C/C++, which lacks a standard language package
ecosystem. In fact, we believe the lack of a standard package ecosystem is a key
contributing factor to many of the C/C++ ecosystem’s security troubles (alongside memory
safety, which we discussed in Section 2.1).

We believe the requesting agencies can reinforce the importance of lock files as part
of software delivery “best practices,” along with automation like CI/CD. We do not
recommend that the requesting agencies reinvent the proverbial wheel on this front and
instead adopt this standardized solution.

In a similar vein, we are confused by the suggestion of, “Incorporating zero trust
architecture into the open-source software ecosystem” and assume this is to satisfy a
mandate to mention zero trust at some point in the RFI.

2.3.1 Reducing “free riding” among contractors

Another solution we believe the requesting agencies should consider is correcting
the pervading free rider problem41 engendered by federal contractors. As of now, the
government purchases software from vendors while those vendors gain free benefits from
OSS without contributing anything back; that is, the OSS allows them to more efficiently
develop software that they then sell to the federal government.

To correct this market distortion, the requesting agencies could require federal
contractors to fund the parts of the OSS ecosystem they are using in the software they sell
to the government. That is, if a federal agency buys a software application LavaLamp from a

40 https://semgrep.dev/blog/2022/the-best-free-open-source-supply-chain-tool-the-lockfile/
41 https://www.britannica.com/topic/free-riding

https://semgrep.dev/blog/2022/the-best-free-open-source-supply-chain-tool-the-lockfile/
https://www.britannica.com/topic/free-riding

contractor, and that contractor implements the open-source library LavaLib as part of
LavaLamp, then the contractor must make a monetary contribution to the LavaLib project.
In the private sector, GitHub makes this a relatively straightforward exercise for
organizations (and individuals) by listing the developers who maintain their dependencies
(based on the code in their own GitHub repositories)42.

As an alternative, the requesting agencies could adopt a similar model to the
Women-Owned Small Business (WOSB) federal contract program, but instead sourcing
contracts from vendors who employ some percentage or absolute number of OSS
contributors and maintainers. We suggest ensuring these contributions are in “notable”
OSS repositories to avoid the perverse outcome of vendors creating open-source projects
only used by themselves just to claim eligibility. The criteria for what make an OSS project
“notable” should be restrictive enough to avoid gaming the system but permissive enough
to cover the vast, variegated menagerie of projects that uphold the software ecosystem as
we know it. We believe a wider standard is beneficial since use cases that emerge from OSS
components can surprise us; for instance, the Rust library btleplug’s43 humble beginnings
belied its eventual adoption in a variety of commercial products.

2.3.2 In-house development

A bold solution we believe the requesting agencies should consider is moving more
software development in-house. In the 1980s, the executive branch decided that federal
agencies should outsource more work, including software development, to private
contractors.44 The ramifications of this decision today are that nearly 70% of the
intelligence budget is spent on contractors45 and a full 40% of all federal discretionary
spending goes to contractors, too46. We believe that this decision should be revised given
the federal government’s national security interest in software.

To be blunt: there will always be misaligned incentives between organizations that
seek to optimize for national security and those with profit motives. Much of the
government’s concern with the software ecosystem, including open source, would be
greatly relieved if they had more liberty to write their own software in-house – even down
to refactoring “fundamental” software components like OpenSSL as they prefer. By writing
more software in-house, federal agencies could apply their preferred practices, policies,
tooling – like fuzz testing – to reach their desired safety goals. Relying on for-profit
contractors who inherently have fewer resources and a different raison dêtre makes it
nearly impossible to achieve the extremely high degree of confidence the federal
government requires.

42 https://github.com/sponsors/explore
43 https://nonpolynomial.com/2023/10/30/how-to-beg-borrow-steal-your-way-to-a-cross-platform-bluetooth-le-
library/
44 https://www.nytimes.com/1985/03/11/us/us-pressing-plan-to-contract-work.html
45 https://about.bgov.com/news/intelligence-contractors-vying-for-slimmer-spy-budget-in-fy-2021/
46 https://www.gao.gov/assets/gao-17-244sp.pdf

https://github.com/sponsors/explore
https://nonpolynomial.com/2023/10/30/how-to-beg-borrow-steal-your-way-to-a-cross-platform-bluetooth-le-library/
https://nonpolynomial.com/2023/10/30/how-to-beg-borrow-steal-your-way-to-a-cross-platform-bluetooth-le-library/
https://www.nytimes.com/1985/03/11/us/us-pressing-plan-to-contract-work.html
https://about.bgov.com/news/intelligence-contractors-vying-for-slimmer-spy-budget-in-fy-2021/
https://www.gao.gov/assets/gao-17-244sp.pdf

At a minimum, we believe the government should have the right to see the source
code of everything they deploy. The scale of the federal government is such as they could
negotiate this, much like Medicare with prescription drug prices. It is not uncommon for
software vendors in the private sector to provide their source code in a form of escrow to
large customers who require review of it (or who want to mitigate the potential for
abandonware). Even Microsoft offers source access to its largest customers via the Shared
Source Initiative47. Usually, this “shared source” or “source available” offering comes with a
fee, but given the government’s scale, it feels reasonable to include “shared source” as part
of the contract amount.

Right now, the government does not know how much of a contractor’s product is
open source – which they could therefore inspect – rather than original contributions by
the contractor itself. An escrow process could reveal this. This is, of course, at direct odds
with the “privacy-preserving” quality described in the RFI, but we believe that the
government’s unique national security concerns likely allow them to require review of
contractor’s source code before deployment.

Whether developing more code in-house or requiring source code review before
deployment, we believe a downstream recommendation is to pay in-house software
engineering talent more competitively. Within our own network in the software ecosystem,
the only engineers who feel they can “afford” to work at a federal government agency are
those who have already cultivated significant wealth in the private sector, usually from the
largest Silicon Valley technology companies.

In fact, we believe – in Gordian Knot fashion – that the ability for the requesting
agencies to attract and retain the necessary talent is a barrier to achieving many of the
goals outlined in the RFI and elsewhere by the requesting agencies. "Can the government
evaluate the security of their contractors?" No, because the government cannot recruit and
retain talent that is capable of such a task. “Can the government develop its own software if
it cannot rely on the security of their contractors?” No, because the government cannot
recruit and retain talent that is capable of that task.

This refrain continues until the final question in this logical chain of, “What is the
strategy that the federal government can execute with budget but limited staff and
expertise?” We believe any answer to that question is unsatisfactory, both for the federal
government and for the private sector – the latter because it makes the likelihood of
misguided regulation higher in the attempt to “do something” about the national security
problems the federal government faces.

Compare the salaries of a senior software engineer in the federal government to
one in the private sector. A software engineer based in the Washington D.C. region with 7
years of experience is likely Grade 11 and would therefore be paid between $78k and

47 https://www.microsoft.com/en-us/sharedsource/

https://www.microsoft.com/en-us/sharedsource/

$102k48 in total compensation annually. Compare this with a software engineer with 7+
years of experience (a “senior” engineer) in the private sector, who could make $145k -
280k (median of $171k)49 in the Washington D.C. area – with total compensation figures
well above $500k at the largest technology companies for that region. In essence, to work
for the federal government, this experienced engineer would need to take a pay cut of 46%
at the bottom percentile to 63% or more (and as much as 80% relative to what they could
earn at large technology companies).

We strongly believe that the return on investment (ROI) of making software
engineering salaries more competitive, in line with median market rates, would be
significantly higher than the status quo of outsourcing software development to federal
contractors and reduce the amount of wasted resources in the process. The options, in our
view are either:

1) Pay talent more money to attract (and retain) more engineers (and higher quality
ones), gaining the ability to execute on the unique requirements of federal
agencies; also opens the potential for the federal government to actively
contribute to maintaining critical OSS projects

2) Or pay even more money to contractors who are incentivized to maximize how
much revenue they earn from the federal government; create the conditions for
regulatory capture and “grift”; create new regulatory hurdles that hurt private
sector innovation to force alignment between private vendor incentives and the
goals of federal agencies (tension that would not exist if developing software in-
house)

We appreciate the significant difficulties of making headway in option one from a
political perspective, but moving software development in-house clearly solves multiple
woes in one fell swoop; as such, we urge the requesting agencies – and stakeholders
beyond – to consider it. It is a chance to reduce financial waste while improving national
security outcomes and avoiding undue interference in free market dynamics, outcomes
that we hope would be considered wins regardless of one’s politics.

2.3.3 Avoiding package ecosystem balkanization

If the federal government were to demand and gain oversight of the software
supply chain, it would usher in a troubling future of package ecosystem balkanization. We
believe it is important to preempt and discourage this eventual conclusion, specifically to
deter the creation and requirement of a government hosted package ecosystem that
suppliers must use for all parts of every software system sold to the federal government.
This "GovComponents" ecosystem could even require that every asset bear provenance
traceable back to a U.S. citizen who has attested to its quality – which would deepen the

48 https://www.opm.gov/policy-data-oversight/pay-leave/salaries-wages/salary-tables/23Tables/html/DCB.aspx
49 https://www.levels.fyi/t/software-engineer/levels/senior/locations/northern-virginia-washington-dc

https://www.opm.gov/policy-data-oversight/pay-leave/salaries-wages/salary-tables/23Tables/html/DCB.aspx
https://www.levels.fyi/t/software-engineer/levels/senior/locations/northern-virginia-washington-dc

mistake. Such a future would further divide the software ecosystem into the general
software community and the cabal of vendors selling software to the federal government.

As the center of gravity for development would remain outside this walled garden,
the effect would be that government-certified components would be out of date and
limited in selection. It would also encourage other governments to create their own
package ecosystems under their control, which further fragments the software ecosystem
and works against the spirit of cooperation in open source. One might assume that this
would permit the federal government to perform more in-depth analysis and verification
on the software they consume, but this is no less effective than requiring contractual
access to the source code (as proposed in Section 2.3.2).

2.4 New focus area: Isolation

The current framing of the “Secure Open-Source Software Foundations” area implies
that the goal outcome is to avoid the problem of exploitable vulnerabilities from existing.
This is an impossible goal, as explained in our introduction. We believe there is a higher ROI
from ensuring the impact of vulnerability exploitation is negligible than from attempting to
eliminate vulnerabilities or prevent them from ever existing, which – we must stress – is
impossible. Consequently, we believe Isolation is an invaluable tactic in this reframing of
the goal as: how do we minimize the impact of vulnerabilities when exploited?

Our suggestion that isolation should serve as a new focus area relates to our earlier
caution that memory safety is not a silver bullet; it will help software security significantly,
but not solve all challenges. Vulnerabilities still exist outside of memory safety, and it is
inevitable that attackers will exploit some of them. Microsoft indicated that 70% of
exploited vulnerabilities in their software were related to memory safety – again
highlighting the acute nature of the memory safety problem50. Yet, 30% remains.

We must minimize the access attackers gain should they succeed in exploiting a
vulnerability. Isolation is a powerful mechanism to achieve this and is aligned with adjacent
goals of Secure by Design and by Default51. Isolation is the practice of placing enforced
limits on the interactivity between a component and the rest of the system. Successfully
isolating a component requires first understanding exactly how it interacts with the rest of
the system. With that understanding it can be deployed in a compartment that enforces
access to only those required capabilities.

Developers can implement isolation at different layers and may employ multiple
techniques to account for potential vulnerabilities in the isolation mechanisms themselves.
Software isolation mechanisms include access control, process isolation, filesystem
permissions, hardware virtual machines, memory protection units, containerization and
namespacing, software-defined networks, library sandboxing, language virtual machines,

50 https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
51 https://www.cisa.gov/resources-tools/resources/secure-by-design-and-default

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://www.cisa.gov/resources-tools/resources/secure-by-design-and-default

service accounts, IAM roles, per-domain isolation, cache partitioning, capabilities, and
more52.

The Mozilla Foundation, in partnership with the University of California at San Diego
(U.C. San Diego), described how using a novel sandboxing tool means they no longer must
worry about zero-day vulnerabilities in the parts of the system it is applied to. This tool,
called RLBox53, uses WebAssembly to isolate subcomponents along functional boundaries.
Faults in vulnerable components become constrained to functional boundaries rather than
leading to an exposure of the host system.

RLBox also supports Mozilla’s efforts to refactor their codebase into Rust54. Because
refactoring code takes time and distracts from feature development, even for organizations
with advanced software delivery practices like Mozilla, RLBox minimizes the impact of the
remaining unsafe code. We believe other organizations would benefit from such an
approach: introducing isolation and sandboxing either first or concurrently with iterative
refactoring of their codebase into memory safe languages.

By using RLBox, it means, in Mozilla’s own words, “we can treat these modules as
untrusted code, and — assuming we did it right — even a zero-day vulnerability in any of
them should pose no threat to Firefox.”55 We like to imagine a world in which organizations
in the public and private sector alike no longer must fret about zero-day vulnerabilities
posing threats to their systems. Integrating RLBox requires a strong engineering culture
and commitment to security that not all organizations possess. As the technology matures
– as well as other tools of a similar nature – we expect it to require less effort and
specialized expertise to adopt successfully. We strongly believe the requesting agencies
should prioritize isolation as a focus area and as a foundational best practice in software
development and delivery to help the software achieve this vision.

In summary, we believe isolation addresses the more meta goal outcome: we do not
want unintended behavior in code to generate systemic damages. It is worth noting that
“attacks” or “attackers” is not included in that statement, because we believe it is irrelevant
whether such systemic impacts arise due to attacker maleficence or performance failures.
As our socioeconomic stability increasingly depends on resilient software, we do not want
that stability disrupted or eroded regardless of whether it is an accident or attack.

2.4.1 Limited Resources and the Quest for Safety

An inherent tension in our recommendation is between improving isolation and
improving memory safety. Software organizations have limited resources and, for those
with a codebase filled with legacy memory-unsafe code, it can be difficult to know which

52 https://dl.acm.org/doi/fullHtml/10.1145/3365199
53 https://rlbox.dev/
54 https://wiki.mozilla.org/Oxidation
55 https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/

https://dl.acm.org/doi/fullHtml/10.1145/3365199
https://rlbox.dev/
https://wiki.mozilla.org/Oxidation
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/

investments will pay the highest security dividends. Some organizations find it difficult to
address both memory safety and isolation in a sustained fashion.

In some sense, we can consider the prevalence of memory unsafe code as an
industry-wide crisis. Memory safety flaws are responsible for approximately 60-70% of
critical vulnerabilities in popular operating systems56. Dealing with this crisis will require
rewrites of systems over decades, given the extent of unsafe code across the entire
software ecosystem. It will require mitigations, redesigns, and rewrites across an untold
number of systems.

Any rewrite presents the opportunity for software maintainers to correct other flaws
present in the original design and build to more modern, modular standards. This is where
employing isolation becomes especially feasible: as parts of the system are peeled off and
rewritten in memory safe languages, their precise access requirements become clear to
maintainers, and it is much easier to adopt isolation. The newly added modularity in the
system is another factor in making it easier to apply isolation boundaries. Similarly, where
modular boundaries already exist in software, maintainers can adopt isolation to limit the
damage of flaws in memory unsafe code more cheaply than rewriting it.

Our aim is pragmatism rather than purity; we realize that the path to designing safe
systems and redesigning unsafe ones is inherently system- and context-dependent. As
such, our recommendation to the requesting agencies is to treat both isolation and
memory safety as tools to improve the safety of systems that will bear differing degrees of
feasibility depending on each organization’s context.

We stress the importance of giving designers and maintainers of systems the space
to make appropriate and informed choices on how to best improve the security of the
systems in their care. Regulators should be wary to mandate one architectural pattern over
another and instead should aim to create that space. Incentivizing rushed rewrites and
redesigns leads to worse security outcomes.

2.4.2 Exogenous Inputs, Memory Safety, and Isolation

Practitioners should focus their attention on parts of the system that process
untrustworthy inputs. Untrustworthy inputs are those that are exogenous to the system,
such as user input. Any such code should either be written in a safe language or run inside
a tightly scoped sandbox with limited access to only the data and peer components it
requires.

We propose the "SUX Rule"57 which states that high privilege components should
always be sandboxed if they are written in an unsafe implementation language and process
exogenous data. This is inspired by the guidelines the Chromium project has on how to

56 https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
57 https://kellyshortridge.com/blog/posts/the-sux-rule-for-safer-code/

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://kellyshortridge.com/blog/posts/the-sux-rule-for-safer-code/

build new high privilege components suitable for their browser.58 We recommend
designers follow this rule for new and substantially rewritten components.

Figure 1: The “SUX Rule”

2.5 New focus area: Design-based software security

We believe it would be a critical mistake and miscalculation for the requesting
agencies to focus on “bolt-on” solutions – which is the preference implied in the RFI – rather
than design-based solutions and practices. This section enumerates design-based solutions
that can support more secure software foundations.

2.5.1 Modular architectures

Returning to our north star of “reducing the systemic impact of code failures,” we
encourage the requesting agencies to consider the safety of architectural patterns, too.

The traditional “monolith” pattern treats an entire application as a single, tightly
coupled unit; a monolithic application will unify components into a single program
(deployed as a single component). Monolithic software architectures are fragile, resist

58 https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

change, and are difficult for engineers to reason about; failure in one part of the system
avalanches to the rest. Yet, monolithic architectures are arguably more common at
“conservative” organizations – like highly regulated industries – despite their tendency to
enable failure propagation.

An alternate architectural pattern is modularity – independent software
components that communicate and coordinate to achieve a shared purpose (the
application’s functionality). More generally, modularity is a system property that allows
distinct parts of the system to retain autonomy during periods of stress and allows for
easier recovery from loss59. When failure occurs in a component within a highly modular
system, it does not “infect” the other components with failure; the failure does not
propagate across the system but instead stays confined to the afflicted component.

Modularity is deeply aligned with resilience because it keeps systems flexible
enough to adapt in response to changes in their external environment (operating
conditions). As a simple example, the human body is quite modular; if you sprain your right
wrist, your other arm and legs usually still retain their typical function. From the
perspective of reducing the systemic impact of code failures, we want software
components to have a similar outcome: an attack on or failure in one component (like the
wrist) should not disrupt or corrupt the entire system (like the human body).

Modular systems are easier to change by design. This means vulnerabilities in
modular systems are easier to patch because we worry less about the side effects the
patch might have on other parts of the system. It also means modular systems are easier
to refactor, which supports the goal of fostering the adoption of memory safety as
described in Section 2.1.

When we discover a vulnerability in one part of the system, it is easier to replace or
change in a modular architecture; in a monolithic architecture, the associated feature or
function must be untangled from the “big ball of mud” – the single, tightly coupled unit
where all the system's concerns are combined together. Splitting a system into modules
also carves a local boundary across which developers can introduce isolation (discussed in
Section 2.4).

We believe the requesting agencies should encourage software engineers to adopt
modular architectural patterns. To be clear, this does not mean adopting a microservices
architectural pattern or a specific design; we encourage software leaders to make choices
that are appropriate for their systems. Organizations can divide or segment a system into
loosely coupled modules with well-defined boundaries without writing and deploying them
as individual services; modules can be libraries, plugins, namespaces, or other units that
end up in a single application.

59 https://www.nps.gov/subjects/culturallandscapes/resilientsystems_modularity.htm

https://www.nps.gov/subjects/culturallandscapes/resilientsystems_modularity.htm

2.5.2 Greater interoperability

We believe ecosystem diversity will reduce the systemic impacts of unintended
failure in software. The requesting agencies could promote ecosystem diversity by
encouraging the adoption of standards with independent and interchangeable software
implementations.

A larger diversity of software that implements interoperable standards at all levels
of the stack would provide additional flexibility when choosing, designing, redesigning, and
deploying systems. This is an extension of modular architectures, where components not
only are designed to be independent of their peers, but actively swapped out for like
equivalents.

Policymakers are in a unique position to require cooperation and coordination
among parties that would otherwise be competitive, and this would result in
interoperability and the ability for operators to substitute implementations in markets
where this would not emerge naturally. This avoids dominant supplier effects, encourages
new market entrants, and drives prices down for all consumers. It also grants researchers
and auditors the ability to apply differential testing between independent implementations,
with associated security and reliability benefits60.

2.5.3 Elimination of the perimeter security model

To reduce systemic damages, we must eliminate the wishful thinking that is the
perimeter security model (what we could also refer to as the “VPN security model”).
Systems should be designed under the assumption that the internal network is
compromised. Organizations with more modern security programs already design systems
under this assumption in the private sector, but it is hardly a widespread philosophy. The
requesting agencies can incentivize this mindset shift.

VPNs are an insecure extension of the perimeter security model that has long been
proven unsafe – especially in recent years as a common vector for ransomware61.
Organizations that want to protect internal services must assume the VPN can be
compromised at any point and design accordingly. Many organizations deploy VPNs only to
satisfy legacy security compliance requirements – that services should only be accessible
on the internal network – since VPNs extend the definition of “internal.”

In addition to the questionable model of VPNs, there is the even more questionable
implementation and security practices of many VPN providers. Software and hardware VPN
vendors have long been a font of vulnerabilities, including remote code execution,
improper access control, and faulty cryptographic implementation62. We encourage the
requesting agencies to recommend reducing reliance on VPNs and, where required, that

60 https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf
61 https://www.bleepingcomputer.com/news/security/cisco-warns-of-vpn-zero-day-exploited-by-ransomware-
gangs/
62 https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012045/pdf

https://www.cs.swarthmore.edu/%7Ebylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf
https://www.bleepingcomputer.com/news/security/cisco-warns-of-vpn-zero-day-exploited-by-ransomware-gangs/
https://www.bleepingcomputer.com/news/security/cisco-warns-of-vpn-zero-day-exploited-by-ransomware-gangs/
https://iopscience.iop.org/article/10.1088/1742-6596/1714/1/012045/pdf

organizations closely monitor VPN traffic, maintain rigorous patching schedules, and
remain poised to substitute vendors on-demand.

It is worth noting that the community-driven, high-performance software VPN
Wireguard63 cannot be FIPS certified because its cryptographic primitives are too new to
meet regulatory compliance, while legacy vendor systems with storied histories of
vulnerabilities and outdated cryptography are certified. This puts the federal government
at a disadvantage.

2.6 New focus area: Resilient practices

To reify a resilient future, the federal government is poised to adjust its approach to
preferring outcomes over processes, and to wield its mighty influence to accelerate some
of the most lagging practices – the ones that moor the software community to an insecure
past.

As we stressed in Section 2.1, we believe organizations should adopt memory safe
languages. But as we stressed elsewhere, refactoring codebases into memory safe
languages involves time, effort, money, and expertise that not all organizations possess
today. When considering the realistic constraints most organizations face, rewriting legacy
software into a memory safe language like Rust is much harder than adopting practices
that improve the system’s resilience to attacks.

This section enumerates some of these practices that can complement the adoption
of memory safe languages to strengthen the security of our software foundations.

2.6.1 Continuous Integration/Continuous Deployment

Resilient practices like continuous integration / continuous delivery (CI/CD) can
accelerate security changes – like patches – and reduce failure impact. In fact, practices like
CI/CD are more accessible to organizations of all sizes and innovation levels than rewriting
into memory safe languages. Refactoring to Rust is more of a “fancy Silicon Valley
company” tactic than CI/CD, despite common protestations we have heard from some
representatives of the requesting agencies.

The practice of CI/CD accelerates the delivery of software changes without
compromising on system reliability or quality. A CI/CD pipeline consists of a series of
automated tasks that deliver a new software release. It generally involves compiling the
application (the “build” step), testing the code (the “test” step), deploying the application to
a repository or staging environment, and delivering the application to production (the
“delivery” or “deployment” step). Automation ensures these activities occur at regular
intervals with minimal interference required by humans. The end result is that software
releases are straightforward, predictable, and frequent when compared to legacy
development models.

63 https://github.com/WireGuard

https://github.com/WireGuard

CI/CD is not limited to hyper-scale tech companies and careless startups; it is
compatible with and is used by some of the most highly regulated private sector
companies, who automate the compliance steps through required approval steps and
value the predictability automation gets them64. In fact, CI/CD leans into the natural human
desire to reduce one’s workload. If a developer is tired of tedious, manual, repetitive work,
they automate it. A CI/CD pipeline means developers don’t have to “babysit” deployments;
delivering software becomes a process that can even be performed while the developer is
on vacation.

CI/CD also gives teams more options during an emergency — the CI/CD pipeline can
safely and quickly rollback the system to a safe, functioning version on demand, and it's
easy to deploy additional infrastructure to account for increased demand or respond to a
denial of service (DoS) attack. This allows operators and maintainers to be more aggressive
at applying software patches, validating hypotheses, distributing work amongst lesser
experienced team members, and responding to attacks. Gone are the days where releases
need to be approved and coordinated with senior engineering staff. Even a junior engineer
can perform a software release safely.

The increased predictability and release velocity of CI/CD proffers substantial
resilience and security benefits. Engineers can automate “toil” work such as dependency
updates, automated vulnerability checking, and record keeping. Instead of performing this
toil work, the engineer now grants approvals or exceptions in a “human in the loop” model.
In this model, there is always a version of the source code ready for the CI/CD pipeline to
deploy; if a developer needs to make a change, they can push it to the system, which
validates and applies it immediately. Frequent and predictable deployments mean
engineers can deploy emergency patches or changes independent of other changes. It also
means engineers can easily roll back a change should it cause outages or regressions.

Auditors are also well served by CI/CD pipelines. Every operation is recorded in
CI/CD systems, including the full audit record of who performed what action when.
Automation even permits annotating software builds and deployments with provenance
records65.

Simply put, if organizations can deploy software on demand, they can deploy
security fixes and changes whenever they need to.

2.6.2 Automated patch cycles at all levels of the stack

We believe the requesting agencies should encourage organizations to automate
and accelerate their patch cycles at all levels of their software stacks. Organizations should
automate software delivery to end users as well as the stages of integration leading up to

64 https://martinfowler.com/articles/devops-compliance.html
65 https://grepory.substack.com/p/der-softwareherkunft-software-provenance

https://martinfowler.com/articles/devops-compliance.html
https://grepory.substack.com/p/der-softwareherkunft-software-provenance

deployment and delivery. The requesting agencies could even insist their contractors adopt
CI/CD (described in Section 2.6.1) to enable quicker patch cycles66.

Patching agility should be the goal, not “vulnerability management”67. Organizations
should implement automation to ensure that when there is an important update, relevant
systems pick it up without a human having to access those machines and perform manual
work.

Vendors should integrate software fixes for their dependencies by continually
updating to the latest versions and should work with their suppliers to reduce integration
times. It is reasonable for agencies to set delivery deadlines for fixes to publicly available
vulnerabilities, with financial compensation as penalty; we will discuss this more in Section
4.2.

Long patch cycles lead to dangerous gaps: the software community will understand
the vulnerability; attackers will exploit it in the wild; but active systems in use by the federal
government still await a fix deployed by contractors. A similar dynamic plays out in private
sector systems with their vendors, although an organization’s own heavy change processes
can also delay their ability to patch. To determine how out of date a system is,
organizations should use the date a flaw was discovered rather than the announced patch
dates by their suppliers. We believe this would encourage vendors to integrate fixes from
vulnerable dependencies more quickly.

For complex dependency trees, integrators should reserve the right and exercise
the technical capability to substitute transitive software dependencies that their suppliers
have provided. Many software ecosystems operate on this model now (see our description
of lock files in Section 2.3). This avoids the scenario where vulnerable components deep
into a supply chain take a long time to be integrated as each vendor in the chain must
perform their own quality assurance and certification.

There is a particular anti-pattern the requesting agencies should discourage:
“shading.”68 If a library vendor embeds or “shades” the library’s dependencies before
distribution to a software integrator, the integrator is now unable to substitute those
dependencies with updated versions. To fix security vulnerabilities in transitive
dependencies, software integrators must therefore wait for the vendors of included
libraries to provide a fix. We recommend against this pattern and believe it represents poor
dependency hygiene, even if it is simpler for integrators in the short-term (since it means
contracts close more quickly).

Instead, we believe library vendors should declare which dependency versions the
library supports and let integrators select appropriate versions. Many package

66 https://www.hashicorp.com/resources/redeploying-stateless-systems-in-lieu-of-patching-petco-packer-
terraform
67 https://mumble.org.uk/blog/2022/02/14/vulnz-being-up-to-date-is-not-the-goal/
68 https://jlbp.dev/JLBP-18

https://www.hashicorp.com/resources/redeploying-stateless-systems-in-lieu-of-patching-petco-packer-terraform
https://www.hashicorp.com/resources/redeploying-stateless-systems-in-lieu-of-patching-petco-packer-terraform
https://mumble.org.uk/blog/2022/02/14/vulnz-being-up-to-date-is-not-the-goal/
https://jlbp.dev/JLBP-18

management ecosystems provide mechanisms to support this automatically for both
closed and open-source software. In fact, it is OSS – and the packaging ecosystem around it
– that moved software away from the norm of shading. With this pattern, integrators of the
end-use software system can patch vulnerable libraries deep into their system's
dependency tree.

Operators of critical systems may even choose to take on the integration capability
themselves, offering them the greatest ability to respond to flaws. This model is not
without its downsides since it requires a level of care and attention beyond deploying a
vendor-provided amalgamated software bundle. By taking this approach, operators are
free to apply their preferred security practices – such as generation of SBOMs – without
forcing their practices on the rest of the ecosystem.

As an example, consider Log4Shell from the perspective of a federal agency. Some
of the systems contractors build for them contain components written in Java. Some of
those Java components are licensed from suppliers, rather than written by the contractor
themselves. Many of those Java components will use the Log4j logging library, and some
may use libraries that depend on Log4j. The result is that a vulnerable Log4j library may
lurk in numerous software systems at multiple levels.

2.6.3 The D.I.E. triad

The D.I.E. triad – distributed, immutable, and ephemeral – reflects system properties
that offer security by design and are powerful techniques to facilitate adaptation:

● Distributed infrastructure involves physically disparate components that coordinate
to perform work. For example, content delivery networks (CDNs) operate points of
presence (POPs) around the world, and these distributed networks are
consequently more resilient to DDoS attacks.

● Immutable infrastructure means that the software does not change after it’s
deployed; when an operator or developer wants to deploy an upgrade, they will
instantiate new infrastructure running the upgraded version rather than modify the
existing infrastructure. Immutable infrastructure means operators can vastly
simplify the operations allowed on their systems, blocking activities like shell access
from developers and attackers alike, but it also facilitates automated change
processes that result in fewer mistakes, such as misconfigurations.

● Ephemeral infrastructure has a shortened lifespan, living only for the duration of a
task. Such infrastructure is easier to “kill” and restart by design; frequent changes
are baked into the assumptions of using it. From an attack perspective, ephemeral
infrastructure makes it difficult for attackers to persist on a system without re-
compromising it each time or “escaping” it for deeper access.

Combined, these system properties can help software systems stay flexible and
ready to adapt to evolving conditions. While these properties require upfront investment,

they make it much easier to operate complex systems that are resilient to change – with
the additional benefit of achieving higher performance. They also make it harder for
attackers to conduct automated attacks against the system, or weaponize exploits at scale.
We believe the requesting agencies could encourage D.I.E. as a design pattern.

2.6.4 Resilience stress testing

If contractors make claims about security or reliability properties of their product,
federal agencies could require evidence generated by resilience stress tests to verify these
claims. Resilience stress tests can elucidate where an organization’s mental model of the
system deviates from its reality. Federal agencies could give contractors a list of failure
scenarios to conduct in their software or require those experiments to run continuously as
ongoing assurance. For example, if contractors supply software that includes a login page,
federal customers could require the contractor verify that all pages including sensitive data
issue appropriate login challenges when accessed directly by unauthenticated traffic.

The evidence generated by these experiments should include a description of end-
to-end system behavior. If the resilience stress test injects a malicious build into the
contractor’s software delivery pipeline, is it blocked by any tests or checks? Do developers
approve the request? If a tool generates an alert about it, do human operators notice the
alert? If so, is there enough context for them to take action? Such details could give federal
agencies greater confidence in the security properties of the software supplied by vendors.

This is not unlike the resilience stress tests the Federal Reserve conducts to evaluate
the systemic resilience of the financial system. We believe this is an area well worth the
requesting agencies’ focus to uncover its potential for minimizing systemic impact.

2.6.5 Vendor-managed deployments

We believe the requesting agencies should usher a migration away from client-
managed deployments towards vendor-managed deployments. Customers who manage
many systems are prone to mismanaging deployments of vendor software. When
customers misunderstand how the software works and cannot devote sufficient attention
to it, they deploy misconfigured or stale versions that foment conditions for failure.

This guidance may seem at odds with our recommendation in Section 2.6.2, but
there is a time and place for each strategy. Vendor managed deployments are safer when
the software is standard and deployed to many customers; customer-managed
deployments are safer when the customer is receiving bespoke software or has unique
operational concerns.

Some vendors try to encourage their customers to patch more frequently by
providing a regular schedule and clear guidance on the impact patches may have on the
system. However, a more effective pattern is for the vendor to manage the deployment
and maintain responsibility for keeping it patched, either through SaaS or a vendor-
managed on-premises deployment.

Vendors can amortize the cost of patching across their entire customer base, can
deploy patches much more safely due to their intimate understanding of the system, and
can even patch some flaws before public knowledge of them is disseminated. This leads to
more reliable and secure systems with lower maintenance cost.

2.7.6 Rate limiting

We believe the requesting agencies should encourage organizations to enforce rate,
location, and other limits on human-operated user accounts. Incident evidence shows that
most compromises involve attackers hijacking accounts69 – either with leaked credentials or
by phishing those credentials – to use the human’s access to perform aberrant operations.

To sharply curtail damage from compromised accounts, organizations can attach
limits on the volume or throughput of operations a human-owned account can perform
over a specified time period; doing so only inconveniences one person when their account
is locked. This can stop many attacks in their tracks, including those which gained access by
exploiting a vulnerability. For instance, the 2022 Uber breach involved an attacker
“spamming” employees with multi-factor authentication (MFA) requests; rate limiting would
restrict the number of MFA requests a single user account could make, eliminating this
potential path in for attackers. If rate limiting becomes a standard requirement as part of
system or product design, similar attack paths may crumble.

Similarly, organizations can bind access tokens or login cookies to the network
address that requested them70 so attackers cannot use exfiltrated or intercepted login
cookies. This tactic causes only mild inconvenience to users who must log into their
accounts again whenever they switch networks.

2.7 Disincentivize known-unsafe architectures and patterns

We believe the requesting agencies should incentivize the reduction of known-
unsafe architectures and patterns that can contribute to systemic damages from software
exploitation. By way of analogy, older dams are often burdened by lower quality designs,
which make them more prone to catastrophic failures7172. But newer dams are higher
quality and safer in large part because they leverage better design principles (and a better
understanding of them)73. While dam failures represent a lethal force, unlike software, the
drastic improvement in dam safety over the past few decades emphasizes the importance
of disincentivizing known-unsafe design patterns.

Many software patterns are well-known to be actively unsafe, yet there is little
incentive for engineers to disrupt the status quo when creating new software systems.

69 https://www.verizon.com/business/en-gb/resources/2023-data-breach-investigations-report-dbir.pdf
70 https://learn.microsoft.com/en-us/power-platform-release-plan/2022wave2/data-platform/stop-cookie-
replay-attacks-ip-binding
71 https://phys.org/news/2017-09-experts-bad-dangers-tallest.html
72 https://www.npr.org/2022/05/05/1096940224/dams-poor-condition-hazardous-dangerous-infrastructure
73 https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_P-93.pdf

https://www.verizon.com/business/en-gb/resources/2023-data-breach-investigations-report-dbir.pdf
https://learn.microsoft.com/en-us/power-platform-release-plan/2022wave2/data-platform/stop-cookie-replay-attacks-ip-binding
https://learn.microsoft.com/en-us/power-platform-release-plan/2022wave2/data-platform/stop-cookie-replay-attacks-ip-binding
https://phys.org/news/2017-09-experts-bad-dangers-tallest.html
https://www.npr.org/2022/05/05/1096940224/dams-poor-condition-hazardous-dangerous-infrastructure
https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_P-93.pdf

These unsafe patterns are usually more convenient, and their downsides are often paid by
someone else – or not at all, if engineers are lucky. We suspect some federal contractors
find it convenient to use these patterns as a way to “cut corners” (and therefore maximize
profits), while others may simply be unaware that they are unsafe due to being largely
divorced from software innovation.

Unsafe patterns include, but are not limited to: memory unsafe languages,
monolithic architectures, stored/encrypted passwords, manual testing, custom tooling,
coarse-grained authorization, custom authentication, bolt-on security controls, object
graph pickling, infinite-duration access tokens, handwritten format parsers, and custom
communication protocols.

2.8 Areas to deprioritize

Knowing what to deprioritize can be as valuable as knowing what to prioritize. This
section reflects our recommendations for what should not be included in the requesting
agencies’ focus.

2.8.1 SBOMs

We do not believe software bills of materials (SBOMs) will support the requesting
agencies’ stated goals. They may remunerate consultants and vendors who can help
organizations navigate this new requirement, but they are not actionable and are divorced
from tangible security outcomes. We strongly suggest the requesting agencies reduce their
focus and evangelism of SBOMs in favor of considering more actionable and impactful
measures (as described throughout this document).

SBOMs, at their best, generate large numbers of JSON blobs that enumerate all the
components within an application. While it seeks to answer, “What are the security
properties of my software?” it cannot, because it relies on software composition analysis of
what is “inside” the software. If we receive a long list of components in an airplane, do we
feel safe enough to fly in it? No. Like any complex systems, the resilience and security of
software systems depends on how components interact.

SBOMs would not have helped SolarWinds at all, nor Colonial Pipeline, nor the
Microsoft Exchange Server compromises. It is debatable if it would even help with
Log4Shell. An SBOM does not reveal whether the parts listed within the long JSON blob are
reachable by the internet, are configured in the precise way attackers need to exploit it, nor
other context necessary to determine the security implications of a software issue. The
profuse information it produces is unactionable.

SBOMs fit the danger we described in the introduction: regulatory requirements
may hurt the benefits software begets the United States far more than they reduce the
already low impact of software exploitation. As a thought experiment, would we have had
the iPhone if we had SBOMs for the past 30 years? Similarly, would we have the cloud if we
required every programmer be licensed by a certification board? Are we willing to forgo

future innovations like these – and their associated benefits to the nation’s economy and
global standing – for a hypothetical “Cybergeddon” resulting from vulnerability
exploitation?

This is not to say we do nothing; the numerous recommendations throughout our
response reflect many things we could do to improve the resilience of the software
ecosystem. But we believe it means requesting agencies must very carefully consider the
second order effects of their proposals. Just as the requesting agencies lament the
unintended consequences of developers’ code, they must scrutinize their own proposals
and recommendations for unintended consequences.

We believe SBOMs – and the fervor for it emanating from the federal government –
is a palpable case of myopic thinking that should be forsaken if the federal government
seeks to maintain credibility on software security.

3. Sustaining Open-Source Software Communities and Governance

3.1 Abandonware

We believe the requesting agencies should include abandonware as a focus area.
Actively maintained projects – both open and closed source – can update code to fix
vulnerabilities and other issues. Abandoned projects cannot do so. We encourage the
requesting agencies to carefully consider the special case where software is abandoned by
its maintainers or is nominally maintained.

Most open-source software gets abandoned74. Whether from life’s inevitable
vagaries and vicissitudes or changes in corporate strategy, maintainers abandon their OSS
projects. But this abandonment may not percolate into an organization’s awareness.

Software composition analysis tools will inform organizations that they are on the
latest version – but the latest version may be a decade old. And such tools may indicate
that there are no vulnerabilities in this component – but that is because the vulnerability
database is no longer maintained. The abandoned component is festering in the system
and the system is maintained by people who don’t know how that component works; their
job is to use the component towards some end.

We would also suggest expanding the definition of abandonware to include
software that has a maintainer, but that maintainer cannot sustain the level of investment
necessary to keep a library secure. Projects like these will often merge external
contributions or have a trickle of commits but will seldom make releases and security
issues will go unaddressed. These projects could be described as rotting.

As stated elsewhere, we believe providing financial assistance to open-source
maintainers is the best means to solve this problem.

74 https://thenewstack.io/what-happens-when-developers-leave-their-open-source-projects/

https://thenewstack.io/what-happens-when-developers-leave-their-open-source-projects/

3.2 OSS Governance

We believe OSS governance is not the problem and adding yet another stakeholder
into the mix will not help. OSS communities self-assemble in whatever structures fit them
best, usually a mix of passion-motivated individuals and engineers employed by
organizations with commercial interests in the project.

4. Behavioral and Economic Incentives to Secure the Open-Source Software
ecosystem

While we wove behavioral and economic incentives into our recommendations
throughout our response, this section covers a few other incentives and considerations we
believe are relevant. In general, we encourage the requesting agencies to focus on
strategies that work with human behavior, rather than against it (such as making the
secure way the easy way).

4.1 Frameworks and models for software developer compensation that incentivize
secure software development practices

Software engineers do not go out of their way to be insecure. That is never their
goal (except in extremely rare cases of espionage). It is a matter of priority and resourcing:
do they have the time and effort to expend on security? Suggesting that engineers should
spend more time making their software secure or reducing the number of bugs is an
obvious one but does not change the reality. They are already doing it to the extent they
can within their current incentives and constraint structure.

We believe the government could decide that certain software projects are of
strategic value and hire maintainers on their payroll. This could involve hiring people who
already maintain a specific OSS project or others who possess the skills and interest to do
so. Google and Red Hat already use a similar strategy in the private sector to achieve their
reliability and security goals – as well as to shape the open source ecosystem to suit their
needs.

4.2 Software liability

We believe software liability is perhaps the swiftest way to kill the OSS ecosystem in
the United States. We do not think the government needs to invoke this show of force to
meet its goals. The nexus of OSS could and would flee the United States if the federal
government made OSS maintainers liable for bugs in their projects.

However, we believe it is more reasonable for the federal government to penalize
contractors and other providers of critical infrastructure who do not sufficiently investigate,
test, and mitigate the OSS components they use. In effect, the federal government could
enforce the mantra, “you own your dependencies.” This penalty may induce a second-order
effect of limiting the population of federal contractors, but we feel it will incentivize
contractors to avoid incorporating OSS components without understanding them first
(including the security implications of those components).

The requesting agencies could also apply this approach to patching standards.
Similar to service-level agreements (SLAs) in the private sector, the federal government
could insist that contractors patch any critical vulnerability present in their software within
some period of time (like 15 days), requiring them to write their own patches for OSS
components if necessary. Contractors would become the effective maintainers of these
projects on behalf of the federal government.

A tight timeline of 15 days, or perhaps sooner75, also incentivizes contractors to
adopt safer software delivery practices, like automation (as described in Section 2.6). To
meet that timeline, contractors must understand all their dependencies; monitor the public
feeds for vulnerabilities in them; know when there is a vulnerability they must patch; safely
incorporate that patch into the larger system and validate it; construct a release for that
system; and deploy it to the federal government.

We believe this is a reasonable expectation in return for receiving federal funds. It is
unacceptable for providers of these systems to blame the open-source community while
simultaneously extracting value from their donated efforts.

We expect this approach to flatten the dependency graph over time. Imagine a
custom system built by a federal contractor in their language of choice. This system will
include their custom code (perhaps written in Java), some open-source libraries it depends
on (potentially Apache Commons), some commercially licensed components (each with
their own open source library dependencies, perhaps Log4J), and a base operating system
for the program to run on (perhaps Red Hat Enterprise Linux). All of this is packaged and
distributed to the federal government to be operationalized. Patching could be required in
any part of the assembled system. Meeting the timeline for patching becomes more
difficult the more parties you have involved. It becomes the contractor’s responsibility to
clean up this supply chain rather than the federal government's.

Making it the contractor's responsibility will encourage their agility to patch, leading
to either closer relationships with their suppliers or new operating models with respect to
dependency management. It is a common practice for commercial component vendors to
bundle transitive dependencies, which makes updating them more difficult. This harmful
practice would be discouraged by short patch timelines and would incentivize them to
behave more like the OSS package ecosystem.

To the extent the software security problem is open source, it is in the commercial
repackaging of open-source software. Ultimately, liability should lie with the providers of a
service; it would be unreasonable to expose the OSS community to liability on transactions

75 We suspect the requesting agencies have data on how long it takes for an attacker to write a successful
exploit after a vulnerability is discovered (whether through private research or public disclosure). We would love
if the requesting agencies shared that data publicly but understand why they may not. Regardless, this data can
inform the appropriate deadline as described in our recommendation.

to which they are not party – and would likely stifle technology innovation the United
States.

4.3 Regulatory Incentives

Regulations compound the software security challenge, especially in conjunction
with outsourcing by the federal government. Many regulations set vague quality
requirements, often without minimums, that the private sector tries to meet in the quickest
and cheapest possible way. This thriftiness often takes the form of assembling OSS in a
haphazard fashion and building a management portal on top of it. Regulations therefore
do not reward vendors with the highest quality software, but instead those who can
pirouette through all the required hoops. Once those vendors are implemented in
customers’ stacks – and therefore difficult to replace – there is minimal incentive for them
to improve quality or innovate.

We believe the federal government is a contributing factor to this problematic
dynamic. It often promotes older standards over more modern approaches because the
modern approaches have not been pushed through the appropriate approval processes –
or do not have lobbyists advocating for them. A network security tooling vendor will lobby
for “zero trust” being a requirement, as will an application security vendor lobby on behalf
of software composition analysis. An architectural pattern like modularity, while
enormously beneficial for software resilience and security by design, has no such deep-
pocketed propagandist in its corner.

In the private sector, it is well known that you must often “fight” your auditor after
you adopt more secure designs or safer practices, as they often no longer fit neatly into the
regulatory checklist. For example, disabling SSH access to production servers is often
considered a best practice for both security and performance reasons; many attackers rely
on SSH access to conduct their operations, so disabling it cuts off this common attack path.
Yet, auditors will insist that the organization must still allow SSH access because a
compliance requirement defined decades ago requires the ability to SSH into the machine.
But, from the perspective of Secure by Design and Default, no one should be able to access
the machine in this manner.

The important question for organizations becomes: should our cybersecurity
strategy align to the compliance checkboxes or aim to achieve more secure outcomes, even
if it defies what auditors expect? Too often, organizations must, by necessity, craft their
strategies for compliance and sacrifice their ability to harness security innovation. And even
if organizations are 100% compliant, they are still insecure76.

As the requesting agencies identify and prioritize focus areas, we encourage them to
think beyond compliance checklists that inevitably calcify and impede improved security.

76 https://josiahdykstra.com/wp-content/uploads/2020/02/NDSS2020_Compliance_Cautions.pdf

https://josiahdykstra.com/wp-content/uploads/2020/02/NDSS2020_Compliance_Cautions.pdf

Our goal is to minimize the systemic impact of unintended behavior in software, not
remunerate the for-profit tools that help organizations check compliance boxes.

4.3.1 Federal Information Processing Standards and Modernity

Encryption standards can be especially stale. Federal Information Processing
Standard (FIPS) Publication 140-certified encryption libraries use ciphers that are inferior to
those used by uncertified software. The encryption community generally reaches
consensus around best practices and standards well ahead of the ratification of federal
information processing standards.

From the perspective of macro-level socio-economic harm, it is dangerous to
implement systems that enter the market with their cryptographic components already
outdated and unlikely to be updated until much later – only once updated FIPS regulation
prohibits that encryption standard.

Modular architectures, where customers can choose, deploy, operate, and later
substitute the cryptographic components independently of the vendor would make it
easier for vendors to support cryptography in their products and would make it easier for
customers to switch to stronger cryptography when it becomes available.

5. R&D/Innovation

5.1. AI and Machine Learning

Regarding the potential for AI and machine learning techniques to solve secure
software development and delivery, we believe matrix multiplication at a grand scale will
not help.

5.2 Other innovation

We believe an important, but overlooked, area for innovation is in making it easier
to substitute and isolate software components. We believe the government should fund
more research into “swappability” and isolation – and encourage the adoption of each.

Applying standard isolation techniques to existing complex software systems, where
it is most useful, is largely a difficult and cumbersome affair. It is much easier to apply
isolation as a system is being built, but often there is less pressure to do so as new, yet-to-
be-deployed systems by definition have no active users. There has been only mild extrinsic
incentive for anyone to make isolation easier and simpler to apply to complex systems and
breaking them down into individual isolatable units requires deep system's context. We
welcome study into ways to improve the developer experience of isolating existing systems
and new mechanisms to do so — indeed, our area of research includes this.

Substituting alternative libraries and components is more cumbersome and difficult
than we believe it has to be. The software community has had relative success
standardizing low level data formats and protocols so that multiple systems can
interoperate on the same data. It has had less success making the software components

themselves swappable. Even when two libraries perform the exact same function, they
usually interact with the rest of the system in ways that are mechanically different.
Engineers refer to this as libraries' application programming interfaces (APIs) being
incompatible. Commercial software vendors have a disincentive to produce interoperable
APIs except in rare circumstances. We welcome research into incentives for increasing
swappability of APIs, mechanisms for abstracting over functionally equivalent APIs, and
other techniques for automated swappability of components.

Conclusion

For the reasons cited herein, we encourage ONCD, CISA, NSF, DARPA, and OMB to
incorporate our recommendations as they identify and prioritize focus areas for improving
open-source security. We believe these recommendations can nourish a future where all
stakeholders are confident in the resilience of our critical systems to software failures –
that we will not crumple from catastrophe when unintended behavior unfolds.

We urge the requesting agencies to respect the power of OSS as an innovation
engine that propels our national economy – indeed, that touches nearly all sectors today.
Obstructing and stalling that engine through ill-informed regulatory requirements would
sabotage this socioeconomic velocity and trammel the nation’s business ecosystem.

Sincerely,

Kelly Shortridge
Founder
Shortridge Sensemaking LLC

Appendix

About the Responders

We, Kelly Shortridge and Ryan Petrich, are recognized experts in cybersecurity and
software engineering as well as frequent collaborators on open-source projects, including
Deciduous77 and Patrolaroid78. We have included our biographies below to highlight our
expertise in the areas covered above. Again, the views expressed herein are not necessarily
the views of our employers or any of their affiliates.

Kelly Shortridge is a Senior Principal in the Office of the CTO at Fastly, a cloud
computing company. Shortridge is lead author of Security Chaos Engineering: Sustaining
Resilience in Software and Systems (O'Reilly Media) and is best known as an expert on
resilience in complex software systems, the application of behavioral economics to
cybersecurity, and modern cybersecurity strategy. Shortridge frequently advises Fortune
500s, investors, startups, and federal agencies and has spoken at major technology
conferences internationally, including Black Hat, RSA Conference, and SREcon. Shortridge’s
research has been featured in scholarly publications such as ACM, IEEE, and USENIX as well
as top media outlets including BBC News, CNN, and The Wall Street Journal. Shortridge also
serves on the editorial board of ACM Queue, a bimonthly computer magazine founded and
published by the Association for Computing Machinery (ACM), the world’s largest learned
society for computing.

Ryan Petrich is a Senior Vice President at Two Sigma Investments with over two
decades of involvement in the open-source software, software security, and software
quality communities. Previously, he served as Chief Technology Officer at Capsule8, a
cybersecurity provider of enterprise detection and response software for Linux after
leading engineering teams in advertising technology. Petrich is also known for his
contributions to open-source projects as well as maintaining foundational libraries at the
core of the jailbreaking ecosystem. As part of his leadership in the jailbreaking community,
he provided aftermarket patches for iOS to fix security vulnerabilities for users before the
vendor was able. Petrich’s research extends into software security via Callander79, a
sandboxing system used to apply tightly scoped policies to software automatically. His
work is published in ACM Queue and Communications of the ACM. He regularly speaks at
software reliability and security conferences, including previously at All Day DevOps, Cloud
Native Wasm Day, and JailbreakCon.

77 https://www.deciduous.app/
78 https://github.com/rpetrich/patrolaroid
79 https://github.com/rpetrich/callander

https://www.securitychaoseng.com/
https://www.securitychaoseng.com/
https://www.securitychaoseng.com/
https://www.deciduous.app/
https://github.com/rpetrich/patrolaroid
https://github.com/rpetrich/callander

	1. Gordian Knots
	1.1 Is OSS critical infrastructure?
	1.2 Expanding the scope beyond OSS
	1.3 Systems thinking

	2. Secure Open-Source Software Foundations
	2.1. Fostering the adoption of memory safe programming languages
	2.1.1 Design-based mitigations
	2.1.2 Unique considerations with unsafe code
	2.1.3 Safer change practices
	2.1.4 Tooling
	2.1.5 Presence of C in the Lowest Layers of the Software Stack

	2.2 Reducing entire classes of vulnerabilities at scale
	2.2.1 Design Patterns

	2.3 Strengthening the software supply chain
	2.3.1 Reducing “free riding” among contractors
	2.3.2 In-house development
	2.3.3 Avoiding package ecosystem balkanization

	2.4 New focus area: Isolation
	2.4.1 Limited Resources and the Quest for Safety
	2.4.2 Exogenous Inputs, Memory Safety, and Isolation

	2.5 New focus area: Design-based software security
	2.5.1 Modular architectures
	2.5.2 Greater interoperability
	2.5.3 Elimination of the perimeter security model

	2.6 New focus area: Resilient practices
	2.6.1 Continuous Integration/Continuous Deployment
	2.6.2 Automated patch cycles at all levels of the stack
	2.6.3 The D.I.E. triad
	2.6.4 Resilience stress testing
	2.6.5 Vendor-managed deployments
	2.7.6 Rate limiting

	2.7 Disincentivize known-unsafe architectures and patterns
	2.8 Areas to deprioritize
	2.8.1 SBOMs

	3. Sustaining Open-Source Software Communities and Governance
	3.1 Abandonware
	3.2 OSS Governance

	4. Behavioral and Economic Incentives to Secure the Open-Source Software ecosystem
	4.1 Frameworks and models for software developer compensation that incentivize secure software development practices
	4.2 Software liability
	4.3 Regulatory Incentives
	4.3.1 Federal Information Processing Standards and Modernity

	5. R&D/Innovation
	5.1. AI and Machine Learning
	5.2 Other innovation

	Conclusion
	Appendix
	About the Responders

