

February 20, 2024

Jen Easterly, Director
Cybersecurity & Infrastructure Security Agency
110 N. Glebe Road
Arlington VA 20598-0630

RE: Doc. No. CISA-2023-0027; Request for Information on ‘‘Shifting the Balance of Cybersecurity
Risk: Principles and Approaches for Secure by Design Software’’

Dear Director Easterly,

As leaders in cybersecurity and software engineering, we appreciate the opportunity
to submit this statement in response to the requests for comment by the Cybersecurity
Infrastructure Security Agency (CISA) concerning their white paper “Shifting the Balance of
Cybersecurity Risk: Principles and Approaches for Secure by Design Software.”

Our adversaries possess a critical advantage in cyberspace: the ability to adapt with
speed. If we are to defend against them, we must capture this advantage for ourselves. We
believe the Secure by Design approach, done well, grants us this capability.

Yet, if what we require of software manufacturers slows them down, then we
impede their capability to adapt to evolving conditions (including attacks). We fear many of
the recommendations in the whitepaper create such friction. Instead, we believe Secure by
Design can align with business priorities like software velocity, developer productivity, and
reliability in production. Our response enumerates principles and practices towards this
noble goal.

Like CISA, we also dream of “a future where technology is safe, secure, and resilient
by design and default” (page 5). But we worry the whitepaper misleads the software
community towards a future in which we are slower than ever than attackers.

Our goal in this response is to describe the priorities, investments, and decisions
that stand a chance of achieving that future where software is safe, secure, and resilient by
design and default. We hope our recommendations shepherd and champion the software
community in this direction.

Our response begins with overarching commentary on the whitepaper, followed by
addressing the sections within the request for information (RFI) where our expertise is
relevant.

The views expressed herein are not necessarily the views of our employers or any of their
affiliates. The information contained herein is not intended to provide, and should not be relied
upon for, investment advice.

1. Commentary on the Whitepaper

1.1 What does Secure by Design mean?

We disagree with how the requesting agencies define “secure by design,” as:
“Products that are secure by design are those where the security of the customers is a core
business goal, not a technical feature.”

Whether Secure by Design is a core business goal is far less relevant than whether
the software manufacturer achieves the goal outcome. Indeed, there is a troubling
undercurrent of resentment throughout the whitepaper that security does not matter
more to software providers. Our goal should not be to force them to care, but instead to

ensure that the software they develop
and deliver minimizes the impact of
attacks by design.

We believe Secure by Design
means software that does not require
human intervention to sustain security
(or resilience, more generally). This
definition draws on safety wisdom
from other domains1, as does the Ice
Cream Cone Hierarchy of Security
Solutions created by Shortridge
(Figure 1). We specifically believe
Secure by Design reflects the first two
elements: system design or redesign
to eliminate hazards or substitute less
hazardous methods and materials.

The Ice Cream Cone Hierarchy
of Security Solutions2 visualizes how
we should prioritize resilience and
security mitigations. The top two
categories of solutions count as
“Secure by Design.” The rest overly rely
on human behavior to succeed. A
handy heuristic is that the less the
solution relies on human behavior to
succeed, the better it is; if it is entirely

1 https://aeasseincludes.assp.org/professionalsafety/pastissues/050/05/030505as.pdf
2 From Security Chaos Engineering: Sustaining Resilience in Software and Systems by Kelly

Shortridge, and illustrated by Savannah Glitschka

Figure 1: Shortridge’s Ice Cream Cone
Hierarchy of Security Solutions

https://aeasseincludes.assp.org/professionalsafety/pastissues/050/05/030505as.pdf

dependent on human behavior to succeed (like training or policies), it is our least preferred
option.

Measures that rely on human behavior – from warning systems down to control
measures, like training – are inferior to solutions that eliminate hazards. Once we get closer
to the bottom of the cone, we cannot scoop as much resilience ice cream into it. In
between these ends are solutions that somewhat rely on human behavior, like any safety
devices that can be forgotten or bypassed; these are among the “bolt-ons” referred to in
the whitepaper (although we believe warning systems also count as “bolt-ons”). Relying on
human behavior makes security unreliable for a few reasons: our cognitive resources are
finite, we face competing pressures, we can be tired, stressed, distracted. We also believe
that most humans have better things to be doing with their time and energy than
expending effort on security.

What does it mean to either eliminate or reduce hazards – and what are hazardous
methods and materials? Hazards are the potential for harm. Hazards include the
characteristics of technology (things) and the actions or inactions of people (activities) that
can produce harm3.

1.1.1 Hazardous methods

Hazardous methods relate to the common folk wisdom of, “Don’t roll your own
crypto(graphy).” Generalizing this advice is what we mean by substituting less hazardous
methods: companies should not roll their own database, logging pipeline, observability, nor
other middleware. Hazardous methods manifest as injection from an attack perspective;
SQL injection (SQLi), for instance, can be characterized as the result of rolling your own
database query builder.

When organizations do not need to differentiate at a software level, they should
standardize and “choose boring.” If a software manufacturer’s competitive advantage is in a
particular facet of infrastructure or software, then they should invest more effort in those
areas and potentially “roll their own,” ideally considering design-based mitigations to
potential hazards.

For example, if an ad tech company’s differentiator is operating at scale, then it is
worth the resource investment for engineers to figure out the multi-region, distributed
nature of their systems. Or if the business is constructing user profiles and refining them
into usable segments, it is worth the resource investment to build and maintain a reliable
machine learning system that can perform that function successfully.

As part of substituting less hazardous methods, we should develop “paved roads”
for easier changes, whether faster deployment of resilience and security-related
configurations or faster patching.

3 https://aeasseincludes.assp.org/professionalsafety/pastissues/050/05/030505as.pdf

https://aeasseincludes.assp.org/professionalsafety/pastissues/050/05/030505as.pdf

1.1.2 Hazardous materials

We characterize “raw materials” in software as languages, libraries, and tooling (this
applies to firmware and other raw materials that go into computer hardware, like CPUs and
GPUs, too). These raw materials are elements woven into the software that need to be
resilient and safe for system operation.

When building software services, all organizations must be purposeful with what
languages, libraries, frameworks, services, and data sources they choose since the service
will inherit some of the properties of these raw materials. Many of these materials may
have hazardous properties that are unsuitable for building a system as per your
requirements. Or the hazard might be expected and, since there isn’t a better alternative
for your problem domain, we must learn to live with it or think of other ways to reduce
hazards by design. Generally, choosing more than one raw material in any category means
we receive the downsides of both.

Hazardous materials include unsafe programming languages. Substituting C or C++
code for a memory safe language (of which there are many) reduces memory management
hazards. That is not to say other languages are immune to safety problems that haunt us in
other ways; but given 70% of vulnerabilities relate to memory safety, adopting memory
safe languages is one of the most impactful substitutions of hazardous materials
organizations can make.

In general, any technology – whether libraries, code snippets, frameworks, and so
on – that is harder to understand is more hazardous. “Boring” technology that is easier to
mentally model, is better documented, and offers a supporting community is a less
hazardous substitute.

Sensitive data can also be thought of as a hazardous raw material – at least when
there’s a breach of customer’s payment data. Rather than requiring a billion hours of
security training, we can propose breaking apart an application into smaller services with
isolated access to data.

The billing service will have access to payment data, as it must, but now the rest of
the application—all the other services that make up its functionality—will not have access
to that data. Or, we could outsource payment handling to a third party.

When we hear something failed due to “user error” or a problem persists because
“humans keep doing X wrong,” we can recharacterize it through the Ice Cream Cone
Hierarchy of Security Solutions. If the “error” is due to human perception, it is a red flag
that a “poorly-designed system, product, or environment”4 is adulterating human
interactions in our system. It reflects a call to action to brainstorm better solutions and
prioritize those at the top of the cone.

4 https://www.visualexpert.com/why.html

https://www.visualexpert.com/why.html

1.1.3 Eliminating and reducing hazards by design

Design-based solutions that eliminate hazards feature two key traits:

• They do not depend on human behavior.
• They provide complete separation of the user from the hazard.

Both features engender more reliable success outcomes, without forcing senior
leadership to magically care about security or product teams having to invest most of their
effort on “radical transparency.”

As one example of system design to eliminate hazards, consider a software
manufacturer that is reeling from a breach of customers’ payment data. Someone
proposes another 20 hours of “secure development” training so software engineers “stop
writing exploitable bugs.” Of course, such training will never work, because mistakes are
inevitable – and also, if we believe that “by design” beats reactive manual efforts, then
training should not be treated as a serious option.

Instead, the software manufacturer could break apart their application’s monolith
into smaller services with isolated access to data. The billing service will have access to
payment data, as it must, but now the rest of the application – all the other services that
make up its functionality – will not have access to that data. If, for example, their order
volume is proprietary, then this also gives them the benefit of being able to partition and
slice up data to keep it private (as a form of classification or compartmentalization).

An alternative the software manufacturer could pursue is outsourcing payment
processing to a third party; that way, they eliminate the hazard by design by not even
storing or handling payment data in their systems. Many Software Engineering teams
already do this for tricky engineering problems, like content delivery (to handle scale,
regionality, and caching) or transaction processing, which will let your database handle the
hazard of concurrent operations on the same data instead.

Another approach is to avoid collecting hazardous data that is not required to
satisfy the system's function. Subscription billing need not require storing credit data for
the duration of the subscription. One could set up a recurring payment authorization with
the issuer and store this information instead. Subscriptions can still be renewed and
canceled with this information, but attackers would be unable to issue new transactions.

Similarly, marketing-technology and advertising-technology companies will avoid
storing email addresses and phone numbers, instead preferring to work with opaque
cookie or consumer identifiers. They may choose this to eliminate the hazard entirely
throughout the system or translate to and from opaque identifiers at the edges of the
system to avoid the hazard throughout most of it. We hope CISA pays particular attention
to this example, as it illustrates how companies can achieve secure by design outcomes
because of how little they care – or want to care – about security.

Another example of eliminating hazards by design is isolation, as it usually does not
rely on human behavior and can completely separate the user from the hazard (including
machine users, like other services interacting with another service). Table 1, developed by
Shortridge, lists opportunities for either eliminating hazards by design or substituting less
hazardous methods or materials by design.

Table 1 - Potential design-based solutions to sustain resilience

1.1.4 Defaults: the principle of least resistance

We believe CISA should make their guidance more concrete on what defaults are
and why software manufacturers should implement them. Inspired by behavioral science
research, we view defaults as one of the more powerful tools in the “nudge” arsenal and
define it as placing the ideal behavior on the path of least resistance5. A default means that
users must opt out of that option or path, which substantially reduces friction caused by
the user needing to opt in.

A classic example of the power of defaults is making 401k contributions opt-in
rather than opt-out. As shown by experimental evidence, automatic 401k enrollment
results in 85% participation rates, a dramatic increase from the 26% to 43% participation
before automatic enrollment kicked in6. In safety outside of security, newer cars lock by
default when you walk away with the keys, which means human behavior no longer
determines safety.

We agree with CISA that the use of defaults as a tactic for encouraging more secure
behavior is not widespread in software engineering, nor is it in traditional cybersecurity
programs.

Yet, the benefits of defaults apply not just to end users, where CISA focused in the
whitepaper, but to the entire software lifecycle. We believe defaults can promote less
hazardous methods or materials as well as lower choice overhead early in the development
of software. For instance, we consider the curation of vetted, secure libraries for engineers
designing systems and the automating provisioning of vetted configurations in CI/CD
pipelines as forms of default.

As a general principle, platform engineering teams – whether at software
manufacturers or at organizations who consume software – should strive to provide teams
with preferred choices of frameworks, middleware, orchestrators, authorization /
authentication patterns, and IaC tools with templates. By blessing these options by default,
platform teams (or security teams) endorse standardization and reduce choice overload for
product teams. They sow a more resilient and higher-quality default for their organization,
even if some teams opt out and select other options. If they receive feedback that users are

5 Van Gestel, L. C., M. A. Adriaanse, and D. T. D. De Ridder. "Do nudges make use of
automatic processing? Unraveling the effects of a default nudge under type 1 and type 2
processing." Comprehensive Results in Social Psychology 5, no. 1-3 (2021): 4-24.
https://www.tandfonline.com/doi/full/10.1080/23743603.2020.1808456

6 Choi, James J., David Laibson, Brigitte C. Madrian, and Andrew Metrick. "For better or for
worse: Default effects and 401 (k) savings behavior." In Perspectives on the Economics of Aging, pp. 81-
126. University of Chicago Press, 2004.
https://www.nber.org/system/files/chapters/c10341/c10341.pdf

https://www.tandfonline.com/doi/full/10.1080/23743603.2020.1808456
https://www.nber.org/system/files/chapters/c10341/c10341.pdf

upset about security policies getting in the way of their work, this indicates opportunities
for further user research.

1.1.5 Cognitive load

We encourage CISA to embrace the reality of how humans behave. Humans, like
computers, possess finite levels of computational resources. When those resources are
burdened by heavy overhead, errors or disruption are more likely to occur in both software
and wetware (the human brain).

Cognitive load represents the level of resource overhead occurring in wetware,
typically considered through the lens of humans learning or solving problems7. Because of
the brain’s processing constraints, software manufacturers must assess cognitive load
when designing systems for use by humans – that “working memory architecture and its
limitations should be a major consideration.”8 Yet, CISA, as well as other federal agencies,
must assess cognitive load when designing recommendations and guidelines for use by
humans, too.

Just like the variety we encounter in computer systems, there are some brains
capable of high levels of performance and some possessing less performant processing
capabilities9. Each brain is optimally efficient at different levels of working memory,
described as “a limited amount of information that can be temporarily maintained in an
accessible state” in support of cognitive processing.

Just as we expect code can successfully run on any relevant computers within a
system, we must ensure that any tools, policies, programs, procedures, and other system
components that we design – again, including recommendations and guidelines we hand to
human software engineers – can successfully run on the relevant brains within the overall
system in question.

Recognizing cognitive load when spelunking through user problems means we
appreciate that human attention is a finite and precious resource. UX is more than just

7 Kirschner, Paul A., John Sweller, Femke Kirschner, and Jimmy Zambrano R. "From cognitive
load theory to collaborative cognitive load theory." International journal of computer-supported
collaborative learning 13 (2018): 213-233. https://link.springer.com/article/10.1007/S11412-018-9277-
Y

8 Paas, Fred, Juhani E. Tuovinen, Huib Tabbers, and Pascal WM Van Gerven. "Cognitive load
measurement as a means to advance cognitive load theory." In Cognitive Load Theory, pp. 63-71.
Routledge, 2016.
https://www.researchgate.net/publication/252083119_Cognitive_Load_Measurement_as_a_Means_t
o_Advance_Cognitive_Load_Theory

9 Jaeggi, Susanne M., Martin Buschkuehl, Alex Etienne, Christoph Ozdoba, Walter J. Perrig,
and Arto C. Nirkko. "On how high performers keep cool brains in situations of cognitive overload."
Cognitive, Affective, & Behavioral Neuroscience 7, no. 2 (2007): 75-89.
https://link.springer.com/content/pdf/10.3758/CABN.7.2.75.pdf

https://link.springer.com/article/10.1007/S11412-018-9277-Y
https://link.springer.com/article/10.1007/S11412-018-9277-Y
https://www.researchgate.net/publication/252083119_Cognitive_Load_Measurement_as_a_Means_to_Advance_Cognitive_Load_Theory
https://www.researchgate.net/publication/252083119_Cognitive_Load_Measurement_as_a_Means_to_Advance_Cognitive_Load_Theory
https://link.springer.com/content/pdf/10.3758/CABN.7.2.75.pdf

figuring out the right button placement to drive clicks; it explores how information should
be presented and how to help practitioners better perform their work.

Software manufacturers and federal agencies designing guidelines alike should
conduct user research, starting in question-asking mode. What sorts of events attract user
attention? How can we draw their attention toward potential security concerns instead?
While it may be tempting to brainstorm answers on our own, we cannot answer these
questions without user research; otherwise, it simply amounts to guesswork and naive
wish making.

In sum, we strongly encourage CISA to reject the belief – common among security
gatekeepers – that security should be the top priority in any situation. It is unrealistic that
security will always be top priority when so many other things are competing for limited
cognitive bandwidth.

1.2 Achieving Secure by Design in practice

Our recommendations throughout this section are grounded in what we believe
would help achieve a future of safe, secure, and resilient software.

We strongly believe that achieving Secure by Design should not be at the expense of
business goals like software velocity, developer productivity, or product differentiation.
Further, we disagree with CISA’s stance that software manufacturers must dedicate special
resources towards Secure by Design (page 8), because this reflects a “bolt-on” process of
the kind explicitly dissuaded elsewhere in the whitepaper.

The designers and builders of software systems must employ practices and tools
that are likely to lead to secure systems; the last thing software security needs is further
segregation.

1.2.1 Opportunities for software manufacturers

In the spirit of aligning business goals with security goals, we compiled the following
list of practices software manufacturers can adopt that both nourish business goals and
sustain security. In many cases, software manufacturers may already employ these
practices but remain unaware of their potential Secure by Design benefits.

We believe the following opportunities – many of which are not covered in the
whitepaper – reflect the most valuable investments software manufacturers can make in
Secure by Design. We anticipate that software manufacturers – or indeed any organization
– can select which of these opportunities make the most sense given their context, and few
organizations will achieve all of them:

1. Make updates easy to deploy for services and automatically applied for end-
users

Keeping systems up to date is critical for systems reliability, as zero days and other
security vulnerabilities can erode system resilience. Software manufacturers should
simplify the system update process by automating their own build, test, and deployment
pipelines and by automatically releasing updates to end users.

For cases where customers maintain their own deployments of software,
manufacturers should make updating to the latest version require few steps that are
consistent from version to version and should avoid releasing changes that require human
intervention to apply. Since many customers will not upgrade through every version,
manufacturers should notify users of critical updates that are required to preserve safety.

These practices also increase release reliability and reduce change failure rate.

2. Decompose software into modular components and isolate the security
critical ones into their own fault/privilege domains

Decomposing software into modules is a design practice that makes it possible for
software manufacturers to scale software development by allowing engineers to make
changes to one part of the system without disrupting other parts. All but the most tangled
systems have some level of modularity to them, yet software manufacturers that design
their systems with a modular architecture do not always isolate those modules when
deploying them.

Isolating modular components into their own fault or privilege domains will limit the
damage of faults and failures – not only minimizing the impact of attacks but also
facilitating faster incident response.

Some forms of isolation, such as message brokers, queues, and batch processing
even allow temporarily suspending non-critical parts of the system to preserve the system's
critical functionality. This can be a critical capability during emergencies, such as when a
system is under high load or active attack.

3. Adopt external systems to manage and rotate keys or tokens

When software manufacturers manage their own security keys and tokens within
their software, they must develop practices to handle this hazardous material safely.
Instead, software manufacturers should adopt external systems designed to manage
secrets and keys.

Outsourcing secrets management eliminates this hazard within their software by
design and frees up time for product teams to invest in differentiating features.

4. Use memory safe languages where possible, reducing the use of "hazardous"
materials

Memory unsafe languages, such as C and C++, are a hazardous material used in the
production of software. They expose direct control over a program's memory layout with
the responsibility that engineers must diligently manage all of the system's memory

manually. Any mistake in memory management results in catastrophic security failure
within the isolation domain where the software runs. Even the most diligent software
engineers with substantial training are incapable of managing memory safely without flaw
on the scale of real systems.

We agree with CISA’s recognition that memory unsafe systems are a danger to the
security of software systems. New systems should be built primarily in memory safe
languages. Where possible, software providers should refactor their existing C and C++
code into memory safe languages. Where not possible, software providers should aim to
isolate the impact of memory unsafe components via isolation technologies.

Teams that migrate away from memory unsafe languages see substantial benefits
to developer productivity; manual memory management is cumbersome and uncivilized.

5. Employ continuous integration on all software components

Continuous integration (CI) is the process of merging code changes into a central
repository regularly, upon which automated systems build and test every commit. Software
engineers gain early detection of regressions and can ensure the system is always in a
releasable state. With the system always in a releasable state, it is much easier for software
teams to respond to faults, failures, and vulnerabilities by shipping code changes and
emergency releases of the system on-demand.

Teams that adopt continuous integration see improvements to developer
productivity, reductions in change failure rate, and reduced time to restore service after
incidents.

6. Deliver software assets via an automated build process

By delivering releases from a continuous integration system, software
manufacturers gain consistency and provenance that is not possible when developers
release software manually. Humans do not excel at performing the same steps repeatedly
and releases are among the most tedious of tasks for engineers. Having machines perform
the tasks of turning code into released software means the release will be consistent every
time and it will be much more difficult to tamper with the process. Secure by design should
extend to all stages of the software delivery lifecycle, and the whitepaper should draw
more attention to the flaws and uncertainty that manual releases introduce.

Teams that adopt automated builds see reductions in change failure rate and
improvements to developer productivity.

7. Validate security, privacy, and other important properties of the system
through automated integration testing

Software manufacturers should validate important properties of the system through
automated integration testing. Testing the system for security, privacy, and correctness
before it is deployed provides greater confidence that the system can be released safely.

This reduces the change failure rate and increases release frequency. This applies both to
regular, everyday releases and to emergency releases, such as in response to an incident
or newly published vulnerabilities in a dependency. Advanced teams may even decide to
enable continuous deployment when their investment in automated testing provides
sufficient confidence.

Teams that adopt automated testing see reductions in change failure rate, reduced
time to restore service after an incident, increased deployment frequency, and a reduced
lead time for changes.

8. Automate library and other dependency updates to stay recent and intervene
when automated upgrades fail

Software teams can integrate automated dependency updating into their
continuous integration systems. An automated job can periodically attempt to upgrade
dependencies to the latest versions and run the system's tests against the proposed
change. Engineers can approve successful upgrades in a single step and, if the upgrade
fails, determine (and make) the necessary changes to the software to support the updated
dependency's change in behavior.

Automated updates make patching less disruptive and time consuming by reducing
the amount of manual effort engineers must spend on routine updates and by reporting
failures related to complex updates earlier.

Teams that adopt automated dependency updating see increased deployment
frequency and higher developer productivity.

9. Make use of vetted, standardized components where possible

Crucially, software manufacturers should use vetted, standardized components in
security-sensitive areas of the system such as those employing cryptography or
authenticating access.

Choosing vetted, standardized components for the organization allows developers
to build new software without succumbing to decision fatigue when selecting specific
technologies. It also improves the implementation similarity of codebases with similar
behaviors, making it easier for engineers to switch between teams, review the code of
other teams, and share code between systems.

Developers have lower cognitive overhead when understanding and reviewing
changes that use technologies they're familiar with. This is especially important for security
sensitive areas of the system such as those employing cryptography or authenticating
access — most engineers are not experts in these domains and shouldn't need to become
experts. Where in doubt, choose boring technology that is well understood and supported
by the community.

Organizations that adopt standardization experience higher developer productivity
and reduced change failure rates.

10. Employ common patterns and style throughout the system, reducing mental
burden on engineers and making mistakes easy to spot

Defining and using standard patterns at all scales of software development reduces
the mental burden of understanding the system and mistakes easier to detect. When
writing new code or making changes to existing code, engineers won't need to figure out
which approach is best when they have the standard pattern to follow.

Organizations that adopt common patterns experience higher developer
productivity and reduced change failure rates.

11. A culture that requires peer review for all source code contributions and
rewards diligence

Collaboration and peer review at all stages of development reduces the impact of
biases and human mistakes. Healthy software organizations encourage diligent review of
peers' work in design documents, code review, and other ceremonies.

Teams that adopt code review experience reduced change failure rates.

12. Make the default configuration secure and straightforward enough to be used
safely without significant modification by operators

Software organizations should aim to make the default configuration of their
systems both straightforward to operate safely and reasonably resilient to the types of
threats it is likely to encounter. Curators of default configurations understand both the
types of threats the system may encounter and the depth of knowledge of the system its
operators will have, balancing the two conflicting requirements appropriately.

Teams that adopt standardized configurations experience higher developer
productivity.

13. Hide and discourage insecure configuration options, such as the ability to
disable certificate validation

Options known to be insecure, such as the ability to disable certificate validation,
should be discouraged, hidden or removed from the software. Often these options are
kept for ease of local development or to provide opt-in compatibility with legacy systems
and should not be used in new production systems. Legacy options are often overlooked
during development and represent a risk to stability of customer systems. As a stark
example, Knight Capital's failure to understand the presence of a legacy configuration
option in its system resulted in losses of over 440 million10.

10 https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

Teams that retire outdated configuration options experience higher developer
productivity and lower change failure rates.

14. Design the system with its operation in mind

Software manufacturers should monitor the system so operators will know when to
respond. The system should offer sufficient logging for responders to be able to
understand the system when it falters or nears the edge of safe operation.

Systems should be designed to be operated by humans. Operators should be
confident that the system has appropriate monitoring in place so the system can report
when it is unhealthy, appropriate alerting in place so they can be confident they'll be
alerted to its unhealthiness, and appropriate logging in place so they'll be able to
understand the system when alerted that it is unhealthy. Furthermore, responding to
incidents will often require making changes to the software and redeploying it. Software
systems that have cumbersome release processes will necessarily have more severe
incidents.

Teams that design systems for operation experience lowered time to restore
service.

15. Monitor the system to verify that it continues to perform its function

Monitoring the system to ensure it continues to perform its function is a critical
requirement of operating a production service. Monitoring systems should ensure not only
that the system is available, responding to health checks, and has available free resources,
but that it is actually performing its designed function. This may involve keeping counts of
transactions and reporting on the queue depth of work to perform.

Teams that monitor systems experience lowered time to restore service.

16. Employ object-relational mappers (ORMs) to eliminate the hazard of potential
SQL injection

Object-relational mappers (ORMs) and other database abstractions exist to make
querying and modifying data in databases easier for developers. In addition to ORMs'
productivity benefits for many types of systems, they have a substantial security benefit as
well. Using an ORM makes it much trickier for an engineer to write a SQL injection
vulnerability — they would have to go out of their way to fight the ORM's defaults to write a
SQL injection. Such efforts will usually be straightforward to spot during code review and
may even be reported by linters and other code analysis tools.

Teams that implement ORMs experience increased developer productivity.

17. Use infrastructure as code (IaC) tools to reduce the hazard of stateful
infrastructure

Infrastructure as code (IaC) is the ability to provision and revise your computing
infrastructure declaratively in code instead of via manual processes and settings. This
eliminates the hazard of production infrastructure drifting from the expectation of
designers, since all infrastructure is declared in code that is updated as the software is. IaC
tooling will make sure that each environment is consistent with the software as software is
deployed into it, removing the burden of applying infrastructure changes from engineers
and avoiding the possibility that they might forget to apply them or apply them incorrectly.

Teams that implement infrastructure as code experience lower change failure rates,
increased deployment frequency, and quicker time to restore service.

18. Outsource sensitive functions like authentication or payment processes to
remove “hazardous” methods or materials (see Section 1.1.1 and Section 1.1.2)

Features involving sensitive actions or data that aren’t core to the business value the
systems deliver are best left to be outsourced to other parties that make that sensitivity
their core business value. By outsourcing features like payment processing or identity
verification to third parties, these features can receive dedicated security attention.

In particular, securely authenticating users by storing and validating credentials is a
feature that is common to many systems but requires ample caution during design and
implementation. Outsourcing these behaviors to a common authentication service or third
party service allows engineers to focus on building the parts of their system that deliver
value.

Teams that outsource sensitive functions like authentication experience higher
developer productivity.

19. Create patterns for common cross-cutting concerns such as logging,
authentication, database access, audit, secret management, health checks,
error propagation, retries (i.e. “paved roads”)

Software leaders should choose standard patterns for cross-cutting concerns that
most teams in their organizations will encounter. Choosing defaults lowers cognitive
overhead for individual teams, since they won't have to make these choices themselves,
and makes it easier for teams to understand their peers' systems, who are likely to choose
the default options. Critically, these patterns should not be in the form of mandates —
depriving designers of agency reduces their ownership over the systems they should be
nurturing and the default options may not be right for every system.

Organizations that define standard patterns – also known as “paved roads” –
experience increased developer productivity, lower lead time for changes, and lower
change failure rate.

20. Create vetted templates with reasonable defaults for common codebase
types, such as service, web frontend, CLI, etc.

Software leaders should build vetted project templates for the common codebase
types that teams within their organization will build. As examples, these can include
templates for services, web frontends, command line tools, event processors, and software
libraries.

Templates are an ideal vessel to provide examples of common patterns, encourage
use of continuous integration, and to default to common choices since most teams will use
a template when starting a new project. Teams will not only feel lower cognitive overhead
when using a template, but will also be empowered to continuously integrate their
software and add automated tests.

Critically, the template should not be seen as a mandate to use any of its patterns or
selections, only an endorsement of them — depriving designers of agency reduces the
ownership over the software systems they should be nurturing and the default choices
may not be right for every system.

Organizations that build standard templates experience increased developer
productivity and lower change failure rate.

21. Use type systems as a mechanism to mitigate engineers’ programming
mistakes

Type systems are machine-enforced requirements for how and what kind of data is
allowed to flow through a system. By making effective use of type systems, engineers can
encode rules about what data is valid in various parts of the system and have these rules
be enforced ahead of time, before the system is deployed instead of at runtime, where the
mistake will be exposed to users.

Type systems lower the cognitive overhead for engineers to understand which
shapes of data are valid at which points in the program and protects the system from
related mistakes. Choosing to forego static typing can be mitigated through additional
automated testing.

Teams that make effective use of type systems enjoy increased developer
productivity and lowered change failure rate.

22. Create guidelines detailing safety requirements that should be satisfied
before a system is initially deployed to users

Build an organization-specific set of guidelines that systems should follow before
they are deployed to users and review new systems before they go live. Software
manufacturers should use the guidelines to direct the product team’s attention to hazards
they commonly overlook during the initial implementation of systems. These guidelines
should be advisory only. Once the product team launches the system to users,
stakeholders should expect the maintainers of the system to assume responsibility for its
safe operation. Guidelines commonly include recommendations on monitoring, logging,
alerting, authentication, configuration management, data retention, and privacy.

Organizations that define safety guidelines experience lowered change failure rate,
both in the initial launch of systems and on an ongoing basis.

23. Define clear ownership of services, components, and systems to encourage
pride in work and a depth of knowledge

Software systems are sociotechnical in nature and evolve over time. Clear
ownership and focus allows engineers to better understand the system's context, design,
and implementation, leading to greater ability to evolve the system towards quality and
resilience.

Teams that have clear ownership over their work experience increased developer
productivity and reduced change failure rate.

1.2.1.1 Patch cycles

We do not see a way out of the cycle of creating and applying fixes. Reducing the
velocity of software delivery and stifling experimentation makes firms less competitive and
innovative in their markets. Additionally, slowing software delivery is empirically correlated
with higher change fail rates11. Change is healthy. One of attackers’ core benefits is that
they can adapt more quickly than their targets; we must encourage similar nimbleness,
whether in software manufacturers or customers.

Instead of avoiding patch cycles, software deploying organizations should aim to
make the patching quicker and more frequent. Automated test suites and dependency
update bots make testing new versions straightforward and easy.

In the common case, dependencies will be compatible, and a human operator can
approve the deployment of the updated software. In the rare case where updated
dependencies cause breakage, the test suite will detect exactly what part of the system is
incompatible with the update, providing helpful context to the person that investigates.

In either case, patches are deployed much more quickly than with manual patching.
This entirely avoids the need for temporary mitigations and workarounds to long patching
cycles that become tomorrow's technical debt.

1.2.1.2 Integration testing

We believe CISA should actively encourage the adoption of integration tests.
Integration tests observe how different components in the system work together, usually
with the goal of verifying that they interact as expected. These tests are valuable in
exposing issues attackers enjoy exploiting, like error-handling bugs, misconfigurations, and
lack of permissioning.

11 https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

How does an integration test look in practice? Consider a basic example of a web
application connected to a database. An integration test could and should cover the case of
“disconnect and reconnect the database to make sure our database abstraction layer
recovers the connection” in most database client libraries.

The AttachMe vulnerability – a cloud isolation vulnerability in Oracle Cloud
Infrastructure (OCI) – exemplifies what software manufacturers should uncover with an
integration test. It also serves as an example of how hazardous it is to focus only on “happy
paths” when testing and developing in general.

The AttachMe bug allowed users to attach disk volumes for which they lack
permissions – assuming they could name the volume by volume ID – onto virtual machines
they control to access another tenant’s data. If an attacker tried this, they could initiate a
compute instance, attach the target volume to the compute instance under their control,
and gain read/write privileges over the volume (which could allow them to steal secrets,
expand access, or potentially even gain control over the target environment).

Aside from the attack scenario, however, this is the sort of interaction software
manufacturers do not want in multi-tenant environments for reliability reasons too. The
software manufacturer could develop multiple integration tests describing a variety of
activities in a multi‐tenant environment, whether attaching a disk to a VM in another
account, multiple tenants performing the same action simultaneously to a shared
database, or spikes in resource consumption in one tenant.

As a general principle, software manufacturers should conduct integration tests that
allow them to observe system interactions across space-time. We believe CISA should
encourage software manufacturers to follow this principle and not solely rely on testing
individual properties of individual components (like unit tests). One input in one
component is insufficient for reproducing catastrophic failures – nor exposing
vulnerabilities at the system-level – in tests. Multiple inputs are needed, but this need not
overwhelm software manufacturers. A 2014 study found that three or fewer nodes are
sufficient to reproduce most failures – but multiple inputs are required and failures only
occur on long-running systems12, highlighting both the deficiency of unit testing and the
necessity of practices like integration testing or resilience stress tests.

1.2.1.3 Modularity and isolation

We do not believe the framing of “damage control” is constructive (page 4). Damage
control involves customers reacting to an intrusion so as to limit, or fix, its damage.

12 Yuan, Ding, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,
Pranay U. Jain, and Michael Stumm. "Simple Testing Can Prevent Most Critical Failures: An Analysis of
Production Failures in Distributed {Data-Intensive} Systems." In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 249-265. 2014.
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Suggesting that customers should never have to do this is a lofty goal that we believe is
unattainable; it requires perfect vigilance on the part of software vendors, integrators, and
customers.

Instead, we encourage CISA to recommend that software manufacturers should
limit damages by breaking software into modules that have isolated fault domains. This is
similar to bulkheads seen in ships, airplanes, and automobiles – that is, systems resilience
through modularity. As far back as the 12th century, humans built ships in compartmental
sections so that when one compartment was damaged, the rest could still function without
the ship losing buoyancy and sinking. Yet, bulkheads offer more than structural safety and
protection against water, fire, or electrical damage; they also divide the ship into functional
areas with designated purposes.

Faults or intrusions should not lead to a catastrophic loss of function or integrity as
they do in monolithic software designs.

The traditional “monolith” pattern treats an entire application as a single, tightly
coupled unit; a monolithic application will unify components into a single program
(deployed as a single component). Monolithic software architectures are fragile, resist
change, and are difficult for engineers to reason about; failure in one part of the system
avalanches to the rest. Yet, monolithic architectures are arguably more common at
“conservative” organizations – like highly regulated industries – despite their tendency to
enable failure propagation.

An alternate architectural pattern is modularity – independent software
components that communicate and coordinate to achieve a shared purpose (the
application’s functionality). More generally, modularity is a system property that allows
distinct parts of the system to retain autonomy during periods of stress and allows for
easier recovery from loss13. When failure occurs in a component within a highly modular
system, it does not “infect” the other components with failure; the failure does not
propagate across the system but instead stays confined to the afflicted component.

Modularity is deeply aligned with resilience because it keeps systems flexible
enough to adapt in response to changes in their external environment (operating
conditions). As a simple example, the human body is quite modular; if you sprain your right
wrist, your other arm and legs usually still retain their typical function. From the
perspective of reducing the systemic impact of code failures, we want software
components to have a similar outcome: an attack on or failure in one component (like the
wrist) should not disrupt or corrupt the entire system (like the human body).

Modular systems are easier to change by design. This means vulnerabilities in
modular systems are easier to patch because organizations worry less about the side
effects the patch might have on other parts of the system. It also means modular systems

13 https://www.nps.gov/subjects/culturallandscapes/resilientsystems_modularity.htm

https://www.nps.gov/subjects/culturallandscapes/resilientsystems_modularity.htm

are easier to refactor, which supports the goal of fostering the adoption of memory safe
languages.

When a software manufacturer discovers a vulnerability in one part of the system, it
is easier to replace or change in a modular architecture; in a monolithic architecture, the
associated feature or function must be untangled from the “big ball of mud” – the single,
tightly coupled unit where all the system's concerns are combined together. Splitting a
system into modules also carves a local boundary across which developers can introduce
isolation.

We believe CISA should encourage software manufacturers (as well as customers –
really, it applies to anyone using software) to adopt modular architectural patterns. To be
clear, this does not mean adopting a microservices architectural pattern or a specific design;
we encourage software leaders to make choices that are appropriate for their systems.
Organizations can divide or segment a system into loosely coupled modules with well-
defined boundaries without writing and deploying them as individual services; modules can
be libraries, plugins, namespaces, or other units that end up in a single application.

1.2.2 Opportunities for CISA

To nurture Secure by Design in practice across the software community, we believe
CISA must consider the following calls to action:

1. Rewrite commonly used software in memory safe languages

Given that memory unsafe languages are one of the more dangerous raw materials
used in software, CISA could finally propel the industry towards safety by taking an active
role in rewriting commonly used software in memory safe languages. The industry is
moving towards this end in fits and starts, but numerous core software libraries and end
user packages are written in memory-unsafe C or C++. CISA could work with the
maintainers of these critical software packages to plan and implement incremental
migrations to safe languages.

2. Invest in the usability of software isolation technologies

Isolation is the core of numerous computing advancements, but isolation's benefits
are difficult for everyday developers to realize in their own software. We believe this is due
to the cumbersome usability of software isolation technologies. Just as the capabilities and
technologies behind containers were available for decades leading up to the container
revolution, so too are the technologies for fine-grained isolation. Fine-grained isolation
would limit the damage of any security vulnerability to the module that it is present in. This
would drastically curtail the impact of most security vulnerabilities and allow teams to
confidently declare that they don't need to patch most vulnerabilities.

3. Work with maintainers of popular languages and libraries to institute
secure defaults and deprecate hazardous APIs and features

CISA is in a unique position to push maintainers of popular libraries and
programming languages to institute secure defaults for their ecosystems and take steps to
deprecate hazardous APIs and features. One can look to the PHP ecosystem as a beacon of
success in its efforts to deprecate unsafe APIs and features. PHP was well known for having
safety flaws endemic in its language design and standard library. Through decades of
effort, safer replacements have been built with the unsafe facilities deprecated and much
of the ecosystem migrated. It takes leadership to challenge the status quo and build a safer
future.

4. Fund the redesign of computer science/engineering curricula — towards
memory safety

Universities over-index on teaching C and C++, when other languages are better for
exploring and studying the behavior of computing machines. CISA could encourage
universities to teach Python, Pascal, Java, Scheme, Logo, JavaScript, Ada, Go and others
instead and assist in rewriting curricula. When teaching the low level mechanics of a
specific machine, its flavor of assembly is a much better choice than C or C++. The greater
the population of new graduates that have a memory safe language as their best-known
language, the more memory safe software will be written.

5. Set standards/requirements for software consumed by the federal
government

To discourage market segmentation via the availability of security features, the
federal government could set requirements that any software it purchases must offer the
same access to specific security features in every one of its editions. Given the federal
government's strong purchasing power, this would shift the incentives on availability of
these features. Such requirements would have to be written carefully to ensure even
malicious compliance meets CISA's goals.

6. Encourage the adoption of interoperable standards and the ability to freely
switch between vendors/providers

To encourage the ability to switch between vendors, CISA and the respective
agencies could encourage the adoption of interoperable standards by requiring strict
compliance to specific standards for certain types of systems.

The presence of multiple compatible implementations in the market would let
customers switch implementations in time of emergency or when a vendor is not meeting
their needs. It would also encourage the disaggregation of software and reduce the ability
of market dominating software vendors to influence neighboring software markets. Such
requirements would have to be written carefully to ensure even malicious compliance
meets CISA's goals.

7. Contribute to open source components

With the widespread use of open source components in software systems, CISA
could directly contribute to open source components in wide use to instill secure by design
principles and make a direct impact on any downstream systems. This could be in the form
of grants, collaboration, design review, and even directly contributing code to address flaws
and unsafe defaults. As an incentive, CISA could add cooperating software projects to a
curated list of secure by design components.

For all the fuss about the software supply chain and its security, few in the
cybersecurity community are directly involved in improving the software itself. We
encourage CISA to leverage its software engineering expertise to actively contribute to
improving popular projects in the software supply chain rather than pursue flamboyant,
but ultimately fruitless pursuits like SBOMs.

1.3 The software market

The software market is enormous and diverse. Our concern is that the whitepaper
largely treats all software manufacturers as if they are similar in type and resources. We
believe CISA should clarify who they mean when they refer to both customers and software
manufacturers. When referring to “customers,” is CISA referring to non-technical
consumers purchasing routers for their home? Hospitals with medical equipment that runs
software? Fortune 500 corporations using databases? And for “software manufacturers,”
are they referring to publicly-traded corporations with billions in revenue? Or is CISA
referring to a few friends who maintain an open source project beloved by software
engineers?

We understand the need to generalize recommendations, but we feel that the
whitepaper’s current form does so at the expense of clarity. For example, the whitepaper
states, in the context of reducing burdens on small to medium organizations (SMOs):
“Conversely, security investments by the relative few manufacturers will scale” (page 13,
emphasis ours). We are puzzled why CISA believes there are “relatively few” software
manufacturers. There are approximately 6 million SMOs with paid employees in the United
States14. While there are approximately 557,000 software and IT services companies in the
United States15, there are at least four million software developers in the United States.
When considering the open source ecosystem, GitHub reported that developers started 52
million new OSS projects in 2022 alone16. If CISA believes that “software manufacturers”
only applies to large businesses, then they should state so. As is, they simultaneously
lament the onerous burdens SMOs face but ignore that many software manufacturers are
SMOs themselves – or even less resourced in the case of OSS maintainers. Software is an

14 https://advocacy.sba.gov/wp-content/uploads/2021/12/Small-Business-FAQ-Revised-
December-2021.pdf

15 https://www.trade.gov/selectusa-software-and-information-technology-industry
16 https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/

https://advocacy.sba.gov/wp-content/uploads/2021/12/Small-Business-FAQ-Revised-December-2021.pdf
https://advocacy.sba.gov/wp-content/uploads/2021/12/Small-Business-FAQ-Revised-December-2021.pdf
https://www.trade.gov/selectusa-software-and-information-technology-industry
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/

exceptionally diverse industry; there is not an overlord class of negligent elites that provide
all the software.

We remain skeptical to what extent software issues like vulnerability exploitation
result in tangible harm to SMOs; the oft-repeated myth that “60% of small businesses go
out of business within 6 months of a data breach” is a trivially disproven statistic17.
Nevertheless, we strongly believe CISA should encourage SMOs to adopt software-as-a-
service (SaaS) tooling. SaaS tooling would alleviate the overhead of deploying and
maintaining the software SMOs use; SaaS manufacturers handle upgrades on the
customer’s behalf. We will discuss SaaS more in the context of accountability in Section 1.6.

1.4 Customer value

We disagree that security should be the focal point of product design and
development processes; the focal point should be delivering value for customers.
Assuming our economy will continue to embrace market competition, CISA’s objective of
forcing companies to prioritize something neither customers (nor shareholders) value over
the things they do value – as demonstrated by their willingness to pay – will be not only
farcical but also alienating to private industry.

Security will never ever be a core business goal except for companies that are selling
security. Software manufacturers should absolutely add product features that allow them
to innovate in their markets. If a software manufacturer obeys this request (page 8), then
they will let their competitors sail ahead of them (the damage to “brand reputation” CISA
reaches for as justification in the whitepaper is not backed by evidence18). It also creates a
disincentive for customers to prefer secure products; customers will still buy products that
solve the problems they care about most, and, again, barring a departure from our free
market system, then the federal government cannot force them to sacrifice prosperity in
the name of security.

However, we believe the whitepaper offers a false dichotomy between security and
innovation; software manufacturers can build new features in a way that preserves system
security – but the whitepaper’s recommendations do not enable them to do so. Security
cannot and will not stifle all other priorities. Our recommended Secure by Design practices
in Section 1.2.1 reflect this philosophy.

1.5 Components vs. systems

Software may be straightforward for developers to understand at the component
level but understanding a component's place in and impact on the system requires a much
greater level of comprehension. Many of the most subtle and worst software failures occur
at boundaries between components or are artifacts of the system's interactions as a whole.

17 https://www.usenix.org/conference/enigma2023/presentation/sanabria
18 https://kellyshortridge.com/blog/posts/markets-dgaf-about-cybersecurity/

https://www.usenix.org/conference/enigma2023/presentation/sanabria
https://kellyshortridge.com/blog/posts/markets-dgaf-about-cybersecurity/

Consider the recent privacy incident with Wyze's smart security cameras19. Wyze
integrated a new asset caching system in a way that mistakenly delivered previously-
cached videos from one user to other users who should not have had access. As a home
security company, they would have known that granting users access to other users' videos
should never be permitted and was a violation of user trust – and yet, their system “let” it
happen and it took customers reporting the issue for Wyze to notice.

So, how did this happen? We suspect that there was component-level testing to
ensure that users could access only their own recordings; it would be negligent not to have
such tests. Similarly, we expect the cache was well tested to ensure it performed its
function, which was to reduce load on other parts of the system by caching assets. But the
system, with the caching layer integrated, was not tested to ensure users could access only
their own recordings. Each of the components may have been secure in isolation, but the
overall system was not. It is essential for software manufacturers to test at the system-level
to ensure it is performing its function, and that it upholds the properties it is expected to.

We encourage CISA to remember that the security of a system is as it is deployed,
not as it is imagined. Alas, little in the whitepaper addresses this distinction between code
components and the system once it is deployed into production.

1.6 Accountability

The whitepaper paints a strange picture of accountability for software security
incidents. In particular, we are left wondering where we must draw the line for customer
accountability. Is a customer never culpable for software mistakes? Is it always the
responsibility of the software manufacturer to ensure the customer is incapable of
shooting themselves in the virtual foot? Should software manufacturers, in effect, surveil
their customers for their purported own good (page 22)?

Imagine a hypothetical customer back before the days of software who experienced
a damaging loss because they could not find important documents within the sea of
unsorted papers across their filing cabinets. Perhaps they would exclaim, "We can't find
what we need in our filing cabinets, our filing cabinet vendor should've imposed a structure
on us so we couldn't get confused!” Would we find this to be a reasonable complaint?

Given the elaborate use of the seatbelt analogy throughout the whitepaper, when
does the customer become accountable for ignoring the seatbelt warning? Or, what if they
drive drunk? What if they are texting? Should car manufacturers angrily beep at them
whenever their hands leave the steering wheel? Should we blame car manufacturers for
when customers speed? After all, manufacturers “allow” speeding and even market their
cars based on how quickly the consumer can accelerate to a glamorous top speed.

19 https://www.cbsnews.com/news/wyze-camera-breach-let-13000-customers-peek-into-
others-homes/

https://www.cbsnews.com/news/wyze-camera-breach-let-13000-customers-peek-into-others-homes/
https://www.cbsnews.com/news/wyze-camera-breach-let-13000-customers-peek-into-others-homes/

The requesting agencies should strongly consider whether and when such
paternalism – and the infantilization of customers – is healthy.

Beyond this, there is no equivalent in software to a seatbelt. Seatbelts rarely get in
the way of legitimate, necessary activity; can be installed in any form of automobile; and
meet the needs of most human bodies. The whitepaper seems to espouse that MFA is the
closest equivalent to seatbelts. However, what happens when MFA impedes a nurse trying
to save a patient’s life? Is it then the software manufacturer’s fault for requiring users to
authenticate so frequently?

This gets to the heart of a core counterargument to the whitepaper’s philosophy:
should the federal government require everyone to use available safety features? While not
stated explicitly in the whitepaper, that is the next logical step if they require software
manufacturers to offer those features for free, to all customers. If only, say, 2% of
customers adopt those now-free features – like the real 2FA adoption rate of 2.3% among
Twitter users20 – should we consider it a Secure by Design success?

Indeed, how many “misconfigurations” are legitimate features that customers only
realize they do not want through the lens of hindsight post-incident?

Furthermore, when the whitepaper suggests that software manufacturers must
"take ownership of customer security outcomes" (page 10), is this ownership in a product
design sense or in a legal sense? We suspect no one in the private sector wants this in a
legal sense.

SaaS obviates many of these concerns because the software vendor performs
ongoing maintenance rather than the customer. But when organizations refuse to adopt
SaaS out of “security” concerns, then fail to resource the ongoing maintenance of the
infrastructure they chose to own – does culpability still reside with the software
manufacturer? When organizations refuse to invest in rectifying or redesigning their
architecture so it does not require less secure and less arcane configurations, is it the
software manufacturer’s fault for still offering those “complex” configurations per the
customer’s request?

The whitepaper seems to imply that customers are not accountable for their fragile,
frangible, festering legacy systems that they avoid modernizing by demanding software
manufacturers contort on their behalf; it is instead seemingly the software manufacturer at
fault for creating the “complexity of security configurations” despite it being the explicit
desire of these customers (no software manufacturer wants to create such a UX mess for
fun). SaaS providers are lucky in this regard; they can deploy software and attest that they
meet some minimum standard. They need not worry about a customer's legacy
environment not accepting modern cryptographic protocols or having a broken corporate

20 https://www.bitdefender.com/blog/hotforsecurity/despite-all-the-advice-97-7-of-twitter-
users-have-still-not-enabled-two-factor-authentication/

https://www.bitdefender.com/blog/hotforsecurity/despite-all-the-advice-97-7-of-twitter-users-have-still-not-enabled-two-factor-authentication/
https://www.bitdefender.com/blog/hotforsecurity/despite-all-the-advice-97-7-of-twitter-users-have-still-not-enabled-two-factor-authentication/

certificate authority or any of the countless other “quirks” that could require
customization.

We strongly believe CISA should be far more cautious when soliciting input from
experts representing the customer population so they do not allow leaders at these
companies to absolve themselves of accountability for their choices.

1.7 “Radical Transparency”

We do not believe software manufacturers are obliged to offer “guided tours” of
their software delivery practices (page 21), as they have important work to do (like
sustaining software quality).

With that said, practitioners can and do share methods to help the broader software
community; we suspect that federal agencies are not often exposed to the spaces where
these learnings are shared. These spaces include software engineering conferences, in-
person meetups, industry groups, blogs, social media, corporate offsites, teams’ bimonthly
sprint retrospectives, and local “third places” (where software engineers often complain
about the absurd hoops their security team asked them to jump through). Furthermore, we
argue that maintainers of open source software perform development out in the open, for
anyone to observe.

We believe it does not make sense for software teams to perform “secure SDLC self-
attestations” (page 23). None of the "secure software development lifecycle" frameworks
align with the workings of modern software teams that deliver software continuously. All
are too prescriptive in their required artifacts and ceremony in a manner that disallows for
continued iteration on process and workflow. They all drastically understate the value of
automation in the modern development workflow and require a separation of roles that
reduces ownership of product outcomes.

We believe CISA should only recommend secure software development
methodologies that incorporate recent research on developer productivity and outcomes,
such as Accelerate: The Science of Lean Software and DevOps and the SPACE developer
productivity framework21.

1.7.1 SBOMs

The construction and assembly of software is complex in a way that a software bill
of materials (SBOM) can neither capture nor communicate. An SBOM instead
communicates a high-level description of some of the components used to assemble a
software asset, but communicates nothing of the structure of the software nor anything
about the most critical custom components.

21 https://queue.acm.org/detail.cfm?id=3454124

https://queue.acm.org/detail.cfm?id=3454124

One learns very little about the security properties of a piece of software by
examining its SBOM. Practitioners would yield better security results by focusing on pinning
their software dependencies to ensure build reproducibility, setting up systems to
automate library updates, and ensuring new versions of software can receive an
automated validation of their behavior. Each of these steps leads to tangible results in the
form of swifter patching and more confident software delivery.

Yet again, we request CISA abandon its quest to force SBOMs on the commercial
sector; if we are to achieve a future where software is safe, secure, and resilient, then
organizations must invest in practices that proffer a tangible, meaningful ROI rather than
fling their fortunes into shallow security theater.

2. Incorporating security into the SDLC

We covered how organizations should incorporate security into their software
delivery activities at length in Section 1.2.1.

2.1.1 Effective tactics

In our experience, the most effective tactics (which echo our recommendations in
Section 1.2.1) include:

• Automation
• Templates
• Patterns
• Defaults
• Clear ownership
• Checklists
• Integration testing
• Paved roads
• Adoption of type systems
• Isolation / sandboxing
• Message queues
• Logs
• Monitoring

Inline security reviews, a common tactic among cybersecurity teams, are not
effective at achieving more secure outcomes and serve only to slow software delivery – and
that rigidity erodes resilience. Periodic source code audits can be effective but are usually
expensive.

2.1.3 & 2.1.4 Smaller software companies and best practices for them

We do not believe smaller software manufacturers are at a disadvantage in terms of
implementing the secure by design principles and practices we enumerated in Section 1.
But they will be at a disadvantage if the practices espoused in the whitepaper become

requirements. Just as is true today, small software vendors are at a disadvantage when it
comes to applying expensive bolt-ons and meeting cumbersome compliance requirements.

Smaller software manufacturers are typically not implementing tools for security
purposes; they choose tools and practices to boost productivity and deliver value to
customers more quickly. The closest dynamic in the private sector is for smaller companies
to implement practices for a compliance benefit, rather than a security benefit (since
compliance and security are distinct aims, but the former prohibits selling to certain
customers).

With that said, there are tactics feasible for smaller, resource-constrained
companies to implement, including:

• Automated version upgrading to reduce the disruption of patch cycles
• Object-relational mappers (ORMs) to eliminate the hazard of potential SQL

injection
• Infrastructure as code (IaC) to reduce the hazard of stateful infrastructure
• Outsourcing authentication to avoid the danger of mishandling credentials
• Outsourcing sensitive functions, like payment processing, to remove

“hazardous” materials (see Section 1.1.2)
• Automated testing to improve release frequency
• Writing new code in memory safe languages to remove "hazardous"

materials

Ideally, smaller companies would make choices that mean security concerns are less
intrusive to their delivery and operations.

2.1.6 Continuous security education

Before digging into details on continuous security education, we feel it is worth
asking whether such programs result in more secure outcomes – or are they a waste of
time that distracts from improving software quality? Will it uplift the least capable
developers more than it annoys and sidetracks the most productive? The most effective
engineers who invest in honing their skills are already teaching themselves more than is
covered in the vast majority of commercial security training.

Some hazards cannot be mitigated through developer training. At great cost, a
software manufacturer could pause any software project implemented in C or C++ for six
months to train its developers on how to avoid memory management flaws. When they
return, they would still make memory management mistakes – many of which wouldn't be
discovered until after the software was deployed. They might make fewer mistakes, yet the
hazard would not be completely mitigated.

The only effective remedy is to migrate to memory safe languages over the long
term, and isolate software components to constrain potential damage in the meantime.

There are a great many hazards to which this applies, as illustrated in Section 1.1 with the
Ice Cream Cone Hierarchy.

In the real world, companies who build paved roads to make the secure way the
easy way for developers – so developers need not be troubled by security concerns
because they are handled for them as part of the tooling they use – achieve more secure
outcomes than those who rely on training and finite developer attention.

We cannot expect engineers to remember every recommendation given to them
during security training at every moment as they are writing software. Their work entails
understanding the relevant parts of the system and making transformations to their
behavior. Security training is often not as relevant as delivering value to stakeholders.

We are skeptical that there is a market for continuous security education that is not
created by compliance requirements. That is, we cannot find evidence that proves
continuous security education improves security outcomes. Considering the considerable
time and attention required to complete such education programs, it creates an
opportunity cost away from investing in activities that actually improve the software’s
quality.

3. Education

3.1 Demand signals to universities

Companies that hire security researchers evaluate them on security merits.
Software engineers are generally not evaluated during the hiring stage nor reskilled after
being hired. Security is not a priority in employee's growth and is an afterthought during
most development ceremonies.

3.2 Security knowledge in computer science curricula

Universities include foundational security knowledge in their computing science
curricula; operating systems courses are practically all about how to implement a privileged
agent that abstracts the underlying machine from unsafe and potentially malicious user
programs. Similarly, any good language course will explore the nature of compilation, the
importance of correct transformations, and the differences between the abstract machine
and its implementation.

Such topics are important for those few who work on operating systems or
languages, but practical, “everyday” security knowledge is rare in universities. Software
engineers in private industry generally assume that code written by academic researchers
is subpar, both from security and software quality perspectives. Universities over-index on
teaching C and C++, when other languages are better for exploring and studying the
behavior of computing machines. CISA could encourage universities to teach Python,
Pascal, Java, Scheme, Logo, JavaScript, Ada, Go and others instead. When teaching the low
level mechanics of a specific machine, its flavor of assembly is a much better choice than C
or C++.

3.3 Online programs

Online computer science and coding education programs accurately determined
that cybersecurity reflects a distinct market of engineers. Thus, they offer separate course
material and programs for cybersecurity professionals. There may be room for universities
to reposition the small amount of cybersecurity education that their software engineering
programs include, but not substantially expand it.

One aspect of computing science education that could change and would,
incidentally, offer a security benefit would be to adjust which programming language is
used in courses where language isn't the specific focus. Many topics can just as easily be
taught in Python, Java, Rust, Scheme, or OCaml as they could in C or C++. We believe CISA,
and other interested federal agencies, could encourage universities to deplatform memory
unsafe languages.

4. Hardening / loosening guides

Software manufacturers (and their customers) should consider hardening guides a
tacit admission that the default configuration is insecure. Every hardening guide
recommendation is a missed opportunity for a safer default. The best practice for
hardening guides is to write software that does not require them. We cannot expect users
to be experts nor go out of their way to receive a secure configuration of it. Software
vendors should design a secure, default configuration that is accessible to all customers.

Thus, while we agree with the whitepaper that relying on hardening guides does not
scale (page 13), we encourage CISA to explicitly denounce hardening guides as an anti-
pattern.

We disagree with some of CISA's guidance as to what actions software
manufacturers should take when settings deviate from their recommendations (page 16).
Surveilling and nagging users does not meaningfully contribute to security. Customers are
not enabling legacy features or options out of a desire to make the system less secure; they
do so out of a necessary requirement to make the software function in their environment.
To be clear, customers are turning on insecure features for the value those features offer,
not because of anything to do with security.

CISA should place more responsibility on the consumers of software to deploy it to
the manufacturer's default specifications. Customers deploying security products to
mitigate their own lack of configuration and deployment hygiene is the height of software
dysfunction. The blame should not lie with software manufacturers who have no power to
clean up customer environments and at best could refuse the customer’s business. We
hope that CISA recognizing this market dynamic and appropriately assigning accountability
would encourage more companies to improve their internal architecture so they no longer
demand their software vendors contort to meet their (often less secure) requirements.

4.1 What are some best practices for hardening guides?

We believe the best practice for hardening guides is to not require them. Again, we
believe software manufacturers should treat every hardening guide as a missed
opportunity for a safer default.

4.2 How do software manufacturers decide on their products’ default configurations?

Software manufacturers choose their default configurations primarily based on ease
of installation and momentum. They typically preserve the previous version’s defaults in
the new version; the new version often inherits these defaults from the tools and
frameworks software manufacturers use to build the software.

From the software manufacturer’s perspective, they must invest in substantial
education campaigns to migrate away from poorly chosen defaults without disrupting
activity. Microsoft's campaign to migrate its customers off the insecure NTLM password
hash started in 201022 and continues to this day.

SaaS providers face an easier burden; the provider can swap out or reconfigure
implementations without customers knowing, and the expense of doing so can be
amortized over many customers.

4.3 Loosening guides

We believe a “loosening guide” is a losing proposition. Consider Microsoft’s progress
in retiring old password hashing and authentication standards; at no point would they
write a "loosening guide” as if that were a noble goal. Instead, they provide guidance to
customers on a case by case basis on how to re-enable certain old features to provide
compatibility with the systems that require it.

4.4 Staffing for hardening guides

Hardening guides are sometimes written by well-meaning security teams who
possess insufficient clout to address deficiencies in defaults. Else, they may be written by
sales engineering teams hoping to position an otherwise incompatible product into high-
regulation or security-sensitive environments. In fact, guidelines on enabling insecure
features are often written or requested by customer success teams as they aim to keep
customers with legacy configurations or infrastructure running up to date versions of the
product.

4.5 Automated hardening mechanisms

Many consumer and small business software products strongly encourage users to
configure multi-factor authentication (MFA), strong passwords, and biometric
authentication during setup, but offer users the ability to decline. Many enterprise software

22 http://msdn.microsoft.com/en-us/library/cc236715(v=PROT.10).aspx

http://msdn.microsoft.com/en-us/library/cc236715(v=PROT.10).aspx

products strongly encourage SSO integrations and use of vendor provided templates for
on-premises deployments. In general, product teams face a strong incentive to constrain
the installation options wherever possible to avoid customer confusion or
misconfiguration.

4.6 Customer experiences with multiple hardening guides

Customers often consider a single hardening guide to be a nuisance, let alone
multiple hardening guides. Any configuration straying from the vendor’s defaults increases
the likelihood of failure or requiring costly maintenance. Customers therefore prefer
vendors that secure their products by default – but, it is worth stressing, not at the expense
of the software’s primary value proposition.

5. Economics of implementing secure by design practices

5.1 Types of costs incurred by software manufacturers

Humans should be able to design, build, and operate reasonably secure systems
without having to think about security too much. The end goal should be that secure by
design programs within companies will not be necessary – and we remain unconvinced
that they are necessary now.

Software is not a unique domain that requires security to be a primary design
concern. It will never be a primary design concern for all but the most paranoid. The best
way to encourage adoption of secure by design principles is not to convince people that
security is important, but instead to shift prevailing practices towards secure defaults (and
others we enumerated in Section 1.2.1).

5.2 How costs are absorbed or passed along

Commercial software vendors consider developer training, security analysis tools,
technology modernization efforts, and the design of new features to be part of research
and development; the customer is not billed. Consulting businesses operate on a different
model and may see the client's desire to redesign or improve the security of a system as an
opportunity to bill a new project.

5.3 Which secure by design practices are the most effective?

We covered which secure by design practices are most effective at considerable
length in Section 1.2.1.

6. Economics of software vulnerabilities

6.1 Impact of vulnerabilities on software manufacturers

6.1.1 How do software manufacturers measure their costs for each vulnerability?

It is unclear to us which, if any, manufacturers attempt to accurately measure costs
of vulnerabilities in their software. One might assume that the strongest public signal of the

cost of a vulnerability may lie in the payouts of bug bounty programs, but we believe there
are more factors than the knowledge benefit alone. There is much debate as to the costs of
a flaw discovered at various stages in the software development lifecycle, and security
vulnerabilities are one facet of this discussion.

6.1.4 How do software manufacturers determine how to remediate vulnerabilities?

We do not believe there is a generalized process for how software manufacturers
determine what vulnerabilities to remediate and how best to address them; product teams
within larger software manufacturers even differ in how they handle this.

The “MAMAA” companies – the tech giants – typically take every potential
vulnerability seriously and will patch nearly every security vulnerability without affecting
product functionality, to the extent they can. In response to vulnerabilities, product teams
in these companies will often build tools to find similar vulnerabilities in their codebases
and prevent new instances. One such example is the new dead code analysis passes that
were added to clang after the "goto fail" incident. Sometimes, product teams in the tech
giants need to change defaults for security reasons and their userbases inevitably protest.

Beyond MAMAA, the remaining software manufacturers are far more variegated –
and often haphazard – in their vulnerability remediation approaches.

The next best performers pin their dependency versions and implement automation
to bump library versions whenever new ones are released. They generally keep their
dependencies up to date, and incorporating security fixes is a straightforward, low-friction
process. For security issues in their own code, remediation is less clear. Often developers
will not understand vulnerabilities that are reported to them, and it can take a long time for
vulnerabilities to be fixed. Sometimes this involves a dedicated security team, but security
teams are even less likely to understand the vulnerability than the engineers are. Most
often, the remediation process is an engineer googling "SQL injection" and stumbling
through the instructions. Most code is written in-house, though the company may not
dedicate a maintainer to old systems.

The tier after the next-best software manufacturers tends to invest some effort to
stay up to date and uses tools that tell engineers that software is out of date – but no one
makes it a priority to update and because they are already so far behind their roadmap
and have slow, high-friction software delivery processes that make updating a boggy slog.
The smarter players in this space know they cannot keep up and therefore constrain their
dependency stack, often relying on Red Hat or Microsoft to provide “blessed” old stacks
that will receive security backports. When projects get too old for the platform vendor to
support, the manufacturer either rewrites or mothballs them. Some remain alive, and
these are the most dangerous. Their ability to patch and understand their own
vulnerabilities is perhaps a little worse than the previous group, but not by much. Many
systems are maintained by contractors and will have no internal owner.

The last tier includes software manufacturers who are barely keeping their systems
functioning and lack any real capability to manage security issues. They will invest the bare
minimum to maintain compliance and nothing more, often bolting-on vendor tooling.

6.1.5 Where are tradeoffs made based on this financial data?

To our knowledge, at no point is someone directly comparing the cost of fixing a
vulnerability (or a class of vulnerabilities) to financial data. Organizational culture will
suggest how much time product teams can reasonably allot to addressing technical debt.
Security vulnerabilities often fit in this category as “emergency work”; it is debt that the
team must address shortly after it is uncovered. Some teams proactively search for
vulnerabilities or set up automated processes to avoid vulnerabilities or discover them
earlier, while other teams prefer to maintain a reactive stance.

In many cases, software organizations assess that it is not worth the effort to
continue maintaining a product, even if it exposes users to hazards. IoT and network
appliances are among the worst offenders here; manufacturers often abandon their
devices shortly after they launch the replacement model. Fixing these problems will require
addressing the underlying incentives.

6.4 Impact of vulnerabilities on customers

6.4.1 Do software manufacturers calculate costs for consumers?

Software manufacturers do not calculate the average cost for customers to deploy
software updates – but they do know the additional overhead results in fewer updates
applied and fewer renewals. This continues the trend towards SaaS, where everyone is
always up to date (because the vendor hosts the software), and supporting older versions
is not necessary. When vendors charge separately for support contracts there is a
disincentive to design software that is easy to patch, as a mechanism to encourage
customers to pay for support.

6.4.2 How do software manufacturers determine the aggregate cost across all
customers for patching?

In general, software manufacturers do not care enough to calculate the aggregate
cost of patching. We suspect the major OS vendors have thought about this most, given
they automatically schedule operating system and application updates when the customer
is least likely to be using the device.

7. Economics of customer demand

7.1 In what ways do customers ask software manufacturers to make products more
secure?

Customers mostly do not ask software manufacturers to make products more
secure. The most they ask for is for their software products to meet some compliance
standard, usually one that they themselves must meet to do business in their industries.
PCI-DSS may have done more for software security than any other effort so far.

The other dimension bearing an indirect incentive to secure software is contractual
stipulations that indicate money will be returned if some function is not performed. The
providing party will perform some level of diligence to ensure they meet the requirement,
which can include cybersecurity basics. More often, it will include things like DoS protection
and failover (that is, availability concerns).

To the extent that open source software is a market, developers pick and choose
which technologies they use. This leads to the furthered adoption of convenient,
productive, and secure languages and tools. Dangerous and cumbersome tools eventually
lose out. Infrequently insecure components are redesigned and reimplemented, but more
often better alternatives displace the older component as engineers build new generations
of systems.

7.2 In what ways do customers ask for specific security features rather than asking
for products that are secure by design?

Customers do not and cannot ask for a product to have a secure design in any
meaningful fashion, except perhaps to prohibit certain practices or attributes known to be
insecure. Customers will more often ask for specific features that meet compliance
requirements, and the vendor decides how to implement those features.

If a software generates too many CVEs or earns a bad reputation, customers may
replace it with an alternative – but they are much more likely to switch due to non-security
reasons, such as if it is burdensome to switch or the alternative is cumbersome to operate
(as may be the case if it requires frequent, difficult to apply patching or complicated
integration)

7.3 How can customers measure the security of a product? Can they take that
measurement and translate it into long-term costs to decision makers in a business?

In our experience, it is laborious – if not theoretically impossible – for software
designers to accurately measure the security of their software, let alone for customers to
do so. Further, we cannot overstate the difficulty of measuring the likelihood of long-tail
effects; should CISA determine how to accurately forecast long-tail effects, then the cyber
insurance industry will rejoice.

7.4 What are the inhibitors to customers creating a strong demand signal that
software should be secure by design?

Apathy is the greatest inhibitor to customers creating a strong demand signal that
software should be secure by design. Customers largely do not care because they do not
have to care. Breaches offer relatively little financial penalty or inconvenience, except in
extreme cases. Indeed, the most common penalty is the burden of more stringent security
measures imposed post-breach that impedes business velocity.

8. Field studies

We discourage CISA from using the term “field studies,” which is an academic term
that is out of touch with how the private sector interacts with customers. The term of art in
software product management is “user research.”

8.1 Do software manufacturers carry out such field studies?

Formal field studies are usually outside the realm of commercial software
development. Some of the largest firms perform such studies, though rarely on security
specifically. Product usability, sentiment, and brand awareness are dimensions of which
firms are most likely to study interactions with customers as they measure the customer's
likelihood to recommend the product or service and purchase again.

The closest practice to field studies in software manufacturing is user research –
understanding how customers interact with a product or feature. However, this user
research is typically conducted on prototypes to understand whether the draft
implementation meets customer requirements, rather than performed after a product or
feature has been adopted for a while.

The typical channels for product teams to discover potential improvements to
existing features are through account teams (the sales professionals who interact with
customers) or customer support requests. For instance, if there are a large volume of
support tickets related to password resets, then this might inform a change to login design.
Or an account representative will relay a request from the customer to the product team,
like wanting more granular RBAC or the ability to download data in CSV format.

8.2 What are some best practices for conducting field studies and incorporating the
results into the SDLC?

Progress in user experience and design is hard-won. The usability aspect of software
security is infrequently studied by designers and user experience professionals and
remains a sorely neglected topic in the cybersecurity industry itself. UX roles are more
often aligned to study measurements that are of importance to the business such as
conversion rates, retention, and comprehension.

The federal government could encourage academic research into the usability of
security features, with findings made open access so all software manufacturers could
benefit.

9. Recurring vulnerabilities

9.1 What are the barriers to eliminating recurring classes of vulnerability?

The continued teaching and use of unsafe practices and technologies.

9.2 How can potential customers determine which software manufacturers have
been diligent in removing classes of vulnerability rather than patching individual
instances of that class of vulnerability?

It is expensive and difficult for customers to assess the security properties of the
software they are considering purchasing or have purchased. Some of the most security
concerned and well-resourced potential customers with in-house capability may perform a
security audit of the software at their own cost, but this is exceptionally rare and applies to
only the most sensitive systems.

A more common approach is for customers to examine a company's track record.
Customers should consider companies that are open about their vulnerabilities –
registering and reporting vulnerabilities they discovered in their own software – among the
most diligent. Similarly, customers could treat investments in tooling to discover and fix
vulnerabilities as a signal that the company is serious about minimizing the harm of
security vulnerabilities. It often takes a public security failure wreaking significant harm for
even large organizations to invest in tooling. For example, Microsoft invested heavily after
Windows XP and Apple invested in compiler tooling after the "goto fail" TLS bug.

9.3 What changes to the Common Vulnerabilities and Exposures (CVE) and Common
Weakness Enumeration (CWE) programs might lead to more companies identifying
recurring vulnerability types and investing to eliminate them?

Instead of focusing on educating software engineers, these programs should take a
more active role in improving the most common libraries and frameworks in use. The sheer
size of the software engineering community eclipses the outreach these programs could
reasonably perform, even with substantial increases in funding. These programs should
instead be purposeful with their outreach, rather than a “spray and pray” approach,
prioritizing groups that themselves seed ideas into their respective subcommunities (like
languages and frameworks).

In this vein, we analyzed the top 10 CWEs to determine the best means of
addressing the vulnerability classes they represent:

• 1, 2, 3 (use after free, heap-based overflow, out-of-bounds write): Addressed through
use of memory safe languages, which provide temporal and spatial memory safety and
prevent buffer overflows and use after frees.

https://cwe.mitre.org/top25/archive/2023/2023_kev_list.html

• 4 (improper input validation): Partially addressed through increased unit testing,
increased reliance on type systems, and by following the principle of "parse, don't
validate." We believe this set of weaknesses to be among the most difficult to address
categorically, since the space of input validation is vast and domain specific.

• 5 (OS command injection): Could be partially addressed by working with language
maintainers and library authors to deprecate the system function and equivalents.
Additionally, this is addressed by improving the usability of sandboxing mechanisms;
many services/programs should not spawn subprocesses or should be limited to a list
of allowed subprocesses.

• 6 (deserialization of untrusted data): Work with language maintainers and library
authors to deprecate unsafe object deserialization frameworks as was done with
python's pickle module; default to requiring an allow-list describing permitted data
types in unsafe serialization/deserialization frameworks.

• 7 (SSRF): Could be addressed by working with language maintainers and library authors
to change defaults of URL fetching libraries to disallow localhost, file://, and local
network requests, or require callers specify a list of allowed endpoints to contact.

• 8 (type confusion): Addressed through use of memory safe languages and languages
that require explicit type conversion. Memory unsafe languages make it all too easy to
read data after it is no longer valid or beyond the correct bounds, and thus interpret
unrelated data of one type as another. Languages that perform implicit type conversion
on data make on data make it all too easy to mistakenly interpret data of one type as if
it were another.

• 9 (path traversal): Addressed through use of type-safe languages that treat paths
separately from strings; to a lesser extent with opt-in path types and linting

• 10 (missing authentication for critical function): Addressed with better language, library,
framework and system defaults; also addressed by standardized authentication
middleware.

10. Customer upgrade reluctance

Given our combined experience in software engineering and product management,
we found ourselves flummoxed by the implication that software vendors want to maintain
backwards compatibility (page 13). We, and our peers at other software manufacturers,
would proverbially (in some cases perhaps literally) jump for joy if we could retire all the
legacy software we must keep around because an important – usually high revenue –
customer wants it.

Every software manufacturer that experiences market success faces the problem of
upgrading users (page 19). When a product is SaaS or available for free, then customers
must cope with their displeasure in being forced to upgrade. Even still, SaaS vendors will
keep features alive long past their shelf life to avoid losing revenue. GitHub only disabled
Subversion support this year even though it has been basically dead for half a decade. They

https://man7.org/linux/man-pages/man3/system.3.html
https://docs.python.org/3/library/pickle.html

even published a blog post justifying this decision by indicating that only 0.02% of traffic
was via Subversion in response to customer outrage.

To be clear, most software manufacturers would love if all users updated to the
latest version, disabled all the weird legacy options, and properly secured their accounts.
Alas, customers often do not wish to do those things; at most, software manufacturers can
nudge them to with end of support / end of life policies. What does CISA believe software
manufacturers should do beyond this – refuse the customer’s business? This defies the
dynamics of our current economic system and is a topic we feel is outside our scope and
that of a cybersecurity agency.

To reiterate: we have never, in all of our combined experience, seen a software
manufacturer maintain backwards compatibility for anything but an important customers’
insistence.

10.1 What are the primary barriers to customers investing in upgrades that should
reduce their risk?

Customers care about security so long as it does not cost them anything. Software
vendors find it difficult enough to compel customers to upgrade to newer versions even
when the upgrade can be dropped in without making changes. Asking users to make
changes to update versions often results in them being stuck on an old version.

We admit this is a thorny problem. Security usability is an underexplored area of
study. For instance, do you improve overall outcomes by keeping an outdated design (say
one that runs under a single privilege domain, at worst as root), but upgrading more users
to versions that don't have mundane vulnerabilities? Or is the better outcome from
performing a vast redesign to substantially reduce the hazard of future vulnerabilities, at
the cost of leaving many users behind?

Support contracts are a way to incentivize this, but they reflect an approach that is
more “stick” than carrot. We believe the best way to pull users along is to provide tangible
non-security reasons to upgrade and make it easy to do so via automation.

SaaS providers face fewer obstacles than providers that deliver software running in
their customers' own environments. An anti-pattern is for software manufacturers to ship
software as root to anticipate what permissions it might need in the future. The app store
and browser extension model works well here: users receive automated upgrades, and if a
new version of the software asset requires more permissions, the system prompts the user
for approval.

10.2 What are some examples of security improvements where customer adoption
was swift despite those barriers?

We found it difficult to find public examples of security improvements where
adoption was swift despite barriers to upgrading.

11. Threat modeling

Threat modeling is an exercise unfamiliar to most engineering teams – and even
some cybersecurity teams. We want to stress that developers do not want to write insecure
software, and so this lack of threat modeling is not due to negligence. In our experience,
the real reason why developers do not threat model is that they do not know where to
begin and cybersecurity lingo is foreign to them – a byproduct of a cybersecurity industry
pockmarked by jargon and festooned with folk wisdom.

Engineers are more familiar with architecture diagrams and infrastructure terms.
For better and sometimes worse, engineers are designing systems with an optimistic view
of their behaviors. More experienced designers will be familiar with faults and failures in
production systems and anticipate these “threats” to availability when designing software.
Some experienced software designers will be somewhat familiar with cybersecurity attacks
in theory, but few will have personal experience with them. Meanwhile, in cybersecurity
land, security engineers are predominantly focused on modeling threats without regard for
other possible disruptors to the system's function.

Software is less secure because these two groups are not speaking the same
language and are performing duplicate work. Security engineers are often frustrated that
the most potent mitigations are inaccessible to them. Software engineers wish security
teams would learn how software is actually developed and delivered to find opportunities
to leverage existing practices towards sustaining resilience (as we have attempted in
Section 1.2.1).

We believe the unifying principle behind both lines of thinking lies in resilience
literature23, which aims to identify a system's behavior in response to all sorts of stressors.
Engineers should excavate possible stresses to a system's purpose, explore how the
system responds to the stressor, and design mitigations that improve the behavior of the
system when under stress. The final stage is to implement the mitigation and retest the
systems against a simulated stressor. This process is more widely known in other
disciplines as “resilience stress testing,” but which has taken on the name "chaos
engineering" within software (we do not like the name, either).

Bringing security threats under the same framework as more mundane threats,
such as hardware failure, allows developers to assess likelihood and impact evenhandedly.
It also makes it more obvious which mitigations offer the most benefit. Rather than try to
identify every possible failure upfront when designing software, engineers should consider
the actions attackers will likely take based on their system's context and evolve their
models alongside the system. This leads to continual improvement, even as the context
and the system's purpose shifts.

23 https://kellyshortridge.com/blog/posts/security-chaos-engineering-sustaining-software-
systems-resilience-cliff-notes/

https://kellyshortridge.com/blog/posts/security-chaos-engineering-sustaining-software-systems-resilience-cliff-notes/
https://kellyshortridge.com/blog/posts/security-chaos-engineering-sustaining-software-systems-resilience-cliff-notes/

While we don't want to be prescriptive about what precise methodology is best, the
specific methodology we suggest is decision trees24, a tactic from behavioral game theory
which we have both spoken about25 and developed open-source software26 around.

We recommend software manufacturers adopt decision trees into their git
workflows to maintain developer velocity. Software engineering teams should publish their
decision trees alongside their architecture diagrams for consumption by peers. In cases
where customers install software on their own infrastructure, software manufacturers may
opt to distribute decision trees to their customers to better communicate which stressors
the software product is resilient to.

12. Charging for security features

12.1 What are some examples of security improvements where customer adoption
was swift despite those barriers?

Most software manufacturers employ product management or product marketing
professionals who decide pricing. The Pragmatic Marketing Institute is a popular product
management training program that offers a module on pricing; the gist is that products
and features should be priced based on the value they provide to customers. With that
said, not all product managers or organizations follow this wisdom and instead price based
on cost incurred (that is, how much it costs to provide the product or feature to customers)
or what competitors charge for the product or feature.

Under the “value provided” pricing strategy, if security features were provided for
free as part of the product offering, it suggests that they offer no value to customers (and
we think the requesting agency agrees with us that such features do offer some sort of
customer value). Under the “cost incurred” pricing strategy, then security features will
always bear a price because – as we have experienced multiple times in our careers –
integrating with SSO or other authentication services is typically a non-trivial endeavor.
Under the “match the competition” pricing strategy, if the incumbents or other primary
competitors in the market charge for security features, then the company will, too.

Stated succinctly, no matter the pricing strategy, the dominant incentive software
vendors face is to charge for security features.

A tiered structure for pricing is common for SaaS vendors to adopt. There are
typically three tiers, based on the longstanding “good-better-best” approach to pricing:

24 https://www.usenix.org/conference/srecon23americas/presentation/shortridge
25 https://www.youtube.com/watch?v=CqwzWoJdbTc
26 https://www.deciduous.app/

https://www.pragmaticinstitute.com/product/course/price/
https://en.wikipedia.org/wiki/Good%E2%80%93better%E2%80%93best
https://www.usenix.org/conference/srecon23americas/presentation/shortridge
https://www.youtube.com/watch?v=CqwzWoJdbTc
https://www.deciduous.app/

1. A basic tier that is the least expensive27. It usually features a limited deployment
(whether a constrained number of hosts, users, or data volumes) and feature set. Security
features like audit logs – which require the vendor to store them – are often not included in
this tier (especially if this tier is free).

2. A medium or “premium” tier with additional features – often the ability to
customize or configure elements of the product – that reflects the “just right” point in the
Goldilocks principle. This tier will sometimes include password protection, role-based
access control (RBAC), or audit logs (with limited retention) – but not always. This is usually
when the vendor begins offering administrative controls, albeit limited in scope.

3. An “enterprise” tier reflecting the greater demands by larger enterprises or
higher-scale companies, with the highest price to match. The luxury tier of software.
Sometimes there is not even a standard per month or per year price associated, but
instead a call-to-action of “Call Sales” to negotiate. This tier always includes SSO / SCIM (if
available), compliance-related features (like detailed auditing with longer retention
periods), and advanced admin controls (whether authentication, allowlisting, rate limiting,
and so on) – along with other valuable non-security features, like reporting or uptime
service level agreements (SLAs).

The three-tier approach is not solely due to the GTM efficacy of the “good-better-
best” principle, either. As anyone with experience in product management at a software
vendor knows, pricing can derange into a nightmarish process befitting a Kafka novella.
Maintaining each security feature as a separate line item may work for a small software
startup but becomes a bottleneck at scale.

Our impression is that the federal government believes that if software vendors
begin breaking out such security features diner-menu style for customers to purchase,
regardless of tier, then many more companies will purchase SSO, audit trails, and so forth.
We believe the federal government overestimates demand among corporations for those
features. Furthermore, if the federal government begins requiring software vendors to
offer these security features as separate line items, we should expect longer sales cycles
(possibly slowing growth sector-wide), and, potentially, the incentive for software vendors
to charge their customers even more for security. For instance, if a software vendor offers
the “enterprise” tier that includes SSO for $5,000 per month, they are unlikely to reduce the
price after breaking out SSO as its own line item; instead, the customer may pay another
$500 per month just for SSO, then another $300 per month for rate limiting, another $200
per month for audit trails, $100 for allowlisting, and so on. Through that lens, there is an

27 Sometimes the basic tier is free. But for many companies, their free tier is not included as
part of “good-better-best”; that is, they offer three paid tiers following good-better-best, with the
free tier meant for hobbyists. For example, Atlassian offers a free tier for JIRA that allows up to 10
users and 2GB of storage; their next tier, “Standard,” allows up to 35,000 users and 250GB of storage
– a considerable jump.

even greater “tax” for security features than before – although they are now more
accessible to more buyers.

The next logical move is for the federal government to require software vendors to
offer SSO integration for free – but we disagree with that move, too. Aside from benefiting
incumbent, for-profit SSO vendors – who have the resources to offer support services to
software vendors who now must integrate with at least some SSO provider – this move
would also create a market moat for better-resourced software vendors. Upstart or smaller
software vendors must ruthlessly prioritize what features they implement; product teams
often face a tradeoff between implementing “table stakes” features like SSO or granular
audit trails vs. differentiating features that would help them gain market share against
incumbent vendors. Requiring software vendors to offer SSO or audit logs for free would
curtail smaller vendors’ ability to enter and compete in their market. Realistically, it means
fewer software vendors would invest in these features in the first place.

There is also the possibility that the market “votes” with their dollars and does not
buy these security features, even when available as separate line items. Or, that software
vendors will “offer” SSO integration – but in the form of requiring customers to manually
integrate it by themselves – or “offer” audit logs – but with extremely limited retention
windows that require customers to spend even more money hoovering the logs out for
longer-term storage. Does the federal government expect to validate these
implementations at each software vendor? We feel that would be a profligate waste of time
and energy.

12.2 What considerations do they factor into their decision?

In addition to the considerations described in Section 12.1, software companies
also consider market segmentation. Software manufacturers will use market segmentation
to offer a single product to a wide market and this involves explicitly withholding features
from some customers purely to entice them to upgrade to a more expensive version or
plan – it costs software vendors little or nothing to offer a feature like SSO once they build
it. Offering a single lower price would mean they'd lose out on capturing value from
customers that could pay more. Offering a single higher price would mean much of the
market would either forego purchasing the product or choose a cheaper competitor.

If an enterprise is likely to require a feature that a mid-market or prosumer
customer doesn't, that feature is strongly likely to be used for market segmentation. Very
often the feature is already built and costs the vendor nothing or very little but is left out of
the less expensive plans so that enterprises must upgrade. Requiring security features in
enterprise compliance requirements without similar requirements for smaller firms or
individuals may result in the features becoming less accessible overall.

Conclusion

For the reasons cited herein, we encourage CISA to incorporate our
recommendations to nurture a future in which software is safe, secure, and resilient. We
hope these recommendations prove that security and business goals are not at odds;
indeed, there are ample opportunities to nourish software velocity while watering the roots
of resilience, too.

We urge the CISA to avoid busywork and theater; action bias is tempting but will not
help us against our adversaries. Instead, all stakeholders in the software security problem
space must work together to make the secure way the fast, easy – and yes, business-
compatible – way.

Sincerely,

Kelly Shortridge

Founder

Shortridge Sensemaking LLC

Appendix

About the Responders

We, Kelly Shortridge and Ryan Petrich, are recognized experts in cybersecurity and
software engineering as well as frequent collaborators on open-source projects, including
Deciduous28 and Patrolaroid29. We have included our biographies below to highlight our
expertise in the areas covered above. Again, the views expressed herein are not necessarily
the views of our employers or any of their affiliates.

Kelly Shortridge is a Senior Principal in the Office of the CTO at Fastly, a cloud
computing company. Shortridge is lead author of Security Chaos Engineering: Sustaining
Resilience in Software and Systems (O'Reilly Media) and is best known as an expert on
resilience in complex software systems, the application of behavioral economics to
cybersecurity, and modern cybersecurity strategy. Shortridge frequently advises Fortune
500s, investors, startups, and federal agencies and has spoken at major technology
conferences internationally, including Black Hat, RSA Conference, and SREcon. Shortridge’s
research has been featured in scholarly publications such as ACM, IEEE, and USENIX as well
as top media outlets including BBC News, CNN, and The Wall Street Journal. Shortridge also
serves on the editorial board of ACM Queue, a bimonthly computer magazine founded and
published by the Association for Computing Machinery (ACM), the world’s largest learned
society for computing.

Ryan Petrich is a Senior Vice President at Two Sigma Investments with over two
decades of involvement in the open-source software, software security, and software
quality communities. Previously, he served as Chief Technology Officer at Capsule8, a
cybersecurity provider of enterprise detection and response software for Linux after
leading engineering teams in advertising technology. Petrich is also known for his
contributions to open-source projects as well as maintaining foundational libraries at the
core of the jailbreaking ecosystem. As part of his leadership in the jailbreaking community,
he provided aftermarket patches for iOS to fix security vulnerabilities for users before the
vendor was able. Petrich’s research extends into software security via Callander30, a
sandboxing system used to apply tightly scoped policies to software automatically. His
work is published in ACM Queue and Communications of the ACM. He regularly speaks at
software reliability and security conferences, including previously at All Day DevOps, Cloud
Native Wasm Day, and JailbreakCon.

28 https://www.deciduous.app/

29 https://github.com/rpetrich/patrolaroid

30 https://github.com/rpetrich/callander

https://www.securitychaoseng.com/
https://www.securitychaoseng.com/
https://www.securitychaoseng.com/
https://www.deciduous.app/
https://github.com/rpetrich/patrolaroid
https://github.com/rpetrich/callander

	1. Commentary on the Whitepaper
	1.1 What does Secure by Design mean?
	1.1.1 Hazardous methods
	1.1.2 Hazardous materials
	1.1.3 Eliminating and reducing hazards by design
	1.1.4 Defaults: the principle of least resistance
	1.1.5 Cognitive load

	1.2 Achieving Secure by Design in practice
	1.2.1 Opportunities for software manufacturers
	1.2.1.1 Patch cycles
	1.2.1.2 Integration testing
	1.2.1.3 Modularity and isolation

	1.2.2 Opportunities for CISA

	1.3 The software market
	1.4 Customer value
	1.5 Components vs. systems
	1.6 Accountability
	1.7 “Radical Transparency”
	1.7.1 SBOMs

	2. Incorporating security into the SDLC
	2.1.1 Effective tactics
	2.1.3 & 2.1.4 Smaller software companies and best practices for them
	2.1.6 Continuous security education

	3. Education
	3.1 Demand signals to universities
	3.2 Security knowledge in computer science curricula
	3.3 Online programs

	4. Hardening / loosening guides
	4.1 What are some best practices for hardening guides?
	4.2 How do software manufacturers decide on their products’ default configurations?
	4.3 Loosening guides
	4.4 Staffing for hardening guides
	4.5 Automated hardening mechanisms
	4.6 Customer experiences with multiple hardening guides

	5. Economics of implementing secure by design practices
	5.1 Types of costs incurred by software manufacturers
	5.2 How costs are absorbed or passed along
	5.3 Which secure by design practices are the most effective?

	6. Economics of software vulnerabilities
	6.1 Impact of vulnerabilities on software manufacturers
	6.1.1 How do software manufacturers measure their costs for each vulnerability?
	6.1.4 How do software manufacturers determine how to remediate vulnerabilities?
	6.1.5 Where are tradeoffs made based on this financial data?

	6.4 Impact of vulnerabilities on customers
	6.4.1 Do software manufacturers calculate costs for consumers?
	6.4.2 How do software manufacturers determine the aggregate cost across all customers for patching?

	7. Economics of customer demand
	7.1 In what ways do customers ask software manufacturers to make products more secure?
	7.2 In what ways do customers ask for specific security features rather than asking for products that are secure by design?
	7.3 How can customers measure the security of a product? Can they take that measurement and translate it into long-term costs to decision makers in a business?
	7.4 What are the inhibitors to customers creating a strong demand signal that software should be secure by design?

	8. Field studies
	8.1 Do software manufacturers carry out such field studies?
	8.2 What are some best practices for conducting field studies and incorporating the results into the SDLC?

	9. Recurring vulnerabilities
	9.1 What are the barriers to eliminating recurring classes of vulnerability?
	9.2 How can potential customers determine which software manufacturers have been diligent in removing classes of vulnerability rather than patching individual instances of that class of vulnerability?
	9.3 What changes to the Common Vulnerabilities and Exposures (CVE) and Common Weakness Enumeration (CWE) programs might lead to more companies identifying recurring vulnerability types and investing to eliminate them?

	10. Customer upgrade reluctance
	10.1 What are the primary barriers to customers investing in upgrades that should reduce their risk?
	10.2 What are some examples of security improvements where customer adoption was swift despite those barriers?

	11. Threat modeling
	12. Charging for security features
	12.1 What are some examples of security improvements where customer adoption was swift despite those barriers?
	12.2 What considerations do they factor into their decision?

	Conclusion
	Appendix
	About the Responders

